Skip to main content

Advertisement

Log in

Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface

  • REVIEW
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are essential components of the plant root mycobiome and are found in approximately 80% of land plants. As obligate plant symbionts, AMF harbor their own microbiota, both inside and outside the plant root system. AMF-associated bacteria (AAB) possess various functional traits, including nitrogen fixation, organic and inorganic phosphate mobilization, growth hormone production, biofilm production, enzymatic capabilities, and biocontrol against pathogen attacks, which not only contribute to the health of the arbuscular mycorrhizal symbiosis but also promote plant growth. Because of this, there is increasing interest in the diversity, functioning, and mechanisms that underlie the complex interactions between AMF, AAB, and plant hosts. This review critically examines AMF-associated bacteria, focusing on AAB diversity, the factors driving richness and community composition of these bacteria across various ecosystems, along with the physical, chemical, and biological connections that enable AMF to select and recruit beneficial bacterial symbionts on and within their structures and hyphospheres. Additionally, potential applications of these bacteria in agriculture are discussed, emphasizing the potential importance of AMF fungal highways in engineering plant rhizosphere and endophyte bacteria communities, and the importance of a functional core of AAB taxa as a promising tool to improve plant and soil productivity. Thus, AMF and their highly diverse bacterial taxa represent important tools that could be efficiently explored in sustainable agriculture, carbon sequestration, and reduction of greenhouse gas emissions related to nitrogen fertilizer applications. Nevertheless, future studies adopting integrated multidisciplinary approaches are crucial to better understand AAB functional diversity and the mechanisms that govern these tripartite relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available in Supplementary Table S1.

References

  • Agnolucci M, Avio L, Pepe A, Turrini A, Cristani C, Bonini P, Cirino V, Colosimo F, Ruzzi M, Giovannetti M (2019) Bacteria associated with a commercial mycorrhizal inoculum: community composition and multifunctional activity as assessed by illumina sequencing and culture-dependent tools. Front Plant Sci 9:1956

    Article  PubMed  PubMed Central  Google Scholar 

  • Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51(3):379–389. https://doi.org/10.1007/s00374-014-0989-5

  • Ahmed B, Hijri M (2021) Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J Cannabis Res 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed B, Smart LB, Hijri M (2021a) Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Front Microbiol 12:741597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed B, Floc'h JB, Lahrach Z and Hijri M (2021b) Phytate and microbial suspension amendments increased soybean growth and shifted microbial community structure. Microorganisms 9

  • Alabid I, Glaeser SP, Kogel KH (2019) Endofungal bacteria increase fitness of their host fungi and impact their association with crop plants. Curr Issues Mol Biol 30:59–74

    Article  PubMed  Google Scholar 

  • Ames R, Mihara K, Bayne H (1989) Chitin-decomposing actinomycetes associated with a vesicular–arbuscular mycorrhizal fungus from a calcareous soil. J New Phytologist 111:67–71

    Article  Google Scholar 

  • Anca IA, Lumini E, Ghignone S, Salvioli A, Bianciotto V, Bonfante P (2009) The ftsZ gene of the endocellular bacterium ‘Candidatus Glomeribacter gigasporarum’ is preferentially expressed during the symbiotic phases of its host mycorrhizal fungus. Mol Plant-Microbe Interact 22:302–310

    Article  CAS  PubMed  Google Scholar 

  • Araldi-Brondolo SJ, Spraker J, Shaffer JP, Woytenko EH, Baltrus DA, Gallery RE, Arnold AEJTFK (2017) Bacterial endosymbionts: master modulators of fungal phenotypes. 981–1004

  • Arora P, Riyaz-Ul-Hassan S (2019) Endohyphal bacteria; the prokaryotic modulators of host fungal biology. Fungal Biol Rev 33:72–81

    Article  Google Scholar 

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Basiru S, Hijri M (2022) The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences. Microorganisms 10

  • Basiru S, Mwanza HP, Hijri M (2021) Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 9

  • Battini F, Cristani C, Giovannetti M, Agnolucci M (2016) Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 183:68–79

    Article  CAS  PubMed  Google Scholar 

  • Battini F, Gronlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:4686

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj DP, Alstrom S, Lundquist PO (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447

    Article  PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322

    Article  CAS  PubMed  Google Scholar 

  • Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Budi SW, Bakhtiar Y, May NL (2013) Bacteria associated with arbuscula mycorrhizal spores gigaspora margarita and their potential for stimulating root mycorrhizal colonization and neem (Melia azedarach Linn) seedling growth. Microbiol Indonesia 6:6

    Google Scholar 

  • Bulgarelli RG, Leite MFA, de Hollander M, Mazzafera P, Andrade SAL, Kuramae EE (2022) Eucalypt species drive rhizosphere bacterial and fungal community assembly but soil phosphorus availability rearranges the microbiome. Sci Total Environ 155667

  • Chen ECH, Morin E, Beaudet D et al (2018) High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol 220:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1:52–57

    Article  PubMed  Google Scholar 

  • Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T (2008) Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol 104:1711–1717

    Article  CAS  PubMed  Google Scholar 

  • Dagher DJ, de la Providencia IE, Pitre FE, St-Arnaud M, Hijri M (2019) Plant identity shaped rhizospheric microbial communities more strongly than bacterial bioaugmentation in petroleum hydrocarbon-polluted sediments. Front Microbiol 10

  • Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytol 217:277–289

    Article  Google Scholar 

  • Davison J, Moora M, Opik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • de Novais CB, Sbrana C, da Conceicao JE, Rouws LFM, Giovannetti M, Avio L, Siqueira JO, Saggin Junior OJ, da Silva EMR, de Faria SM (2020) Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium. Mycorrhiza 30:389–396

    Article  PubMed  Google Scholar 

  • Dearth SP, Castro HF, Venice F, Tague ED, Novero M, Bonfante P, Campagna SR (2018) Metabolome changes are induced in the arbuscular mycorrhizal fungus Gigaspora margarita by germination and by its bacterial endosymbiont. Mycorrhiza 28:421–433

    Article  CAS  PubMed  Google Scholar 

  • Di Fossalunga AS, Lipuma J, Venice F, Dupont L, Bonfante P (2017) The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin-antitoxin systems during the life cycle of its host. ISME J 11:2394–2398

    Article  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12

  • Dove Nicholas C, Veach Allison M, Muchero W, Wahl T, Stegen James C, Schadt Christopher W, Cregger Melissa A (2021) Assembly of the populus microbiome is temporally dynamic and determined by selective and stochastic factors. mSphere 6:e01316–01320

  • Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J, van Straalen NM, Wouda T, Vandenkoornhuyse P, Kiers ET (2013) Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology 94:2019–2029

    Article  PubMed  Google Scholar 

  • Emmett BD, Levesque-Tremblay V, Harrison MJ (2021) Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J

  • Fernández Bidondo L, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V, Pérgola M, Godeas A (2016) Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol 105:86–90

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis

  • Floc’h JB, Hamel C, Laterriere M, Tidemann B, St-Arnaud M, Hijri M (2022) Long-term persistence of arbuscular mycorrhizal fungi in the rhizosphere and bulk soils of non-host Brassica napus and their networks of co-occurring microbes. Front Plant Sci 13:828145

    Article  PubMed  PubMed Central  Google Scholar 

  • Forczek ST, Bukovská P, Püschel D, Janoušková M, Blažková A, Jansa J (2022) Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environ Experiment Botany 199

  • Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahan J, Schmalenberger A (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl Soil Ecol 89:113–121

    Article  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghignone S, Salvioli A, Anca I et al (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–145

    Article  CAS  PubMed  Google Scholar 

  • Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. AGRONOMY-BASEL 10

  • Goldmann K, Boeddinghaus RS, Klemmer S et al (2020) Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environ Microbiol 22:873–888

    Article  PubMed  Google Scholar 

  • González-Chávez MdCA, Newsam R, Linderman R, Dodd J, Valdez-Carrasco JM (2008) Bacteria associated with the extraradical mycelium of an arbuscular mycorrhizal fungus in an As/Cu polluted soil. Agrociencia 42:1–10

    Google Scholar 

  • Gopal S, Chandrasekaran M, Shagol C, Kim K-Y, Sa T-M (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J Soil Sci Fert 45:582–592

    Article  CAS  Google Scholar 

  • Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K (2020) Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci Rep 10:6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner F-J, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nutzmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364

  • Iffis B, St-Arnaud M, Hijri M (2014) Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol Lett 358:44–54

    Article  CAS  PubMed  Google Scholar 

  • Iffis B, St-Arnaud M, Hijri M (2016) Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. Environ Microbiol 18:2689–2704

    Article  CAS  PubMed  Google Scholar 

  • Iffis B, St-Arnaud M, Hijri M (2017) Petroleum contamination and plant identity influence soil and root microbial communities while AMF spores retrieved from the same plants possess markedly different communities. Front Plant Sci 8

  • Ingrid Richter, Zerrin Uzum, Claire E. Stanley, Nadine Moebius, Timothy P. Stinear, Sacha J, Pidot, Iuliia Ferling, Falk Hillmann, Hertweck C (2020) Secreted TAL effectors protect symbiotic bacteria from entrapment within fungal hyphae

  • Jansa J, Hodge A (2021) Swimming, gliding, or hyphal riding? On Microbial Migration along the Arbuscular Mycorrhizal Hyphal Highway and Functional Consequences Thereof 230:14–16

    Google Scholar 

  • Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Bécard G (2004) Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum”, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Zhang L, Zhou J, George TS, Feng G (2021) Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol 230:304–315

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y, Ezawa T, Hayashi H, Kawaguchi M, Akiyama K (2019) Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat Microbiol 4:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Kazenel MR, Lynn JS, Lee Taylor D, Rudgers JA (2019) Plant identity influences foliar fungal symbionts more than elevation in the Colorado rocky mountains. Microb Ecol 78:688–698

    Article  PubMed  Google Scholar 

  • Kokkoris V, Hart M (2019) In vitro propagation of arbuscular mycorrhizal fungi may drive fungal evolution. Front Microbiol 10:2420

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agr Ecosyst Environ 231:233–239

    Article  CAS  Google Scholar 

  • Kuga Y, Wu TD, Sakamoto N, Katsuyama C, Yurimoto H (2021) Allocation of carbon from an arbuscular mycorrhizal fungus, Gigaspora margarita, to its gram-negative and positive endobacteria revealed by high-resolution secondary ion mass spectrometry. Microorganisms 9

  • Lasudee K, Tokuyama S, Lumyong S, Pathom-Aree W (2018) Actinobacteria associated with arbuscular mycorrhizal funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: evidence obtained from mung bean (Vigna radiata) and Thai jasmine rice (Oryza sativa). Front Microbiol 9:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecomte J, St-Arnaud M, Hijri M (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 317:43–51

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Morse D, Hijri M (2019) Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. Mycorrhiza 29:403–412

    Article  PubMed  Google Scholar 

  • Lee SJ, Kong M, Harrison P, Hijri M (2018) Conserved proteins of the RNA interference system in the arbuscularmycorrhizal fungus rhizoglomus irregulare provide new insight into the evolutionary history of glomeromycota. Genome Biolog Evol 10:328–343

    Article  CAS  Google Scholar 

  • Lemanceau P, Blouin M, Muller D, Moenne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhao J, Tang N, Sun H, Huang J (2018) Horizontal gene transfer from bacteria and plants to the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 9:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Long L, Zhu H, Yao Q, Ai Y (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9

    Article  CAS  Google Scholar 

  • Long L, Lin Q, Yao Q, Zhu H (2017) Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita. 3 Biotech 7:8

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Becard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, Oikawa A, Chen W, Tawaraya K (2021) Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza

  • Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hypha of a glomus species. Int J Plant Sci 159:581–589

    Article  Google Scholar 

  • Mathieu S, Cusant L, Roux C, Corradi N (2018) Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytol 220:1129–1134

    Article  PubMed  Google Scholar 

  • Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C (2014) Active invasion of bacteria into living fungal cells. eLife 3:e03007

  • Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC, Riley R, Sun H, Grigoriev IV, Pawlowska TE (2017) Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nat Commun 8:1843

    Article  PubMed  PubMed Central  Google Scholar 

  • Morin E, Miyauchi S, San Clemente H et al (2019) Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 222:1584–1598

    Article  CAS  PubMed  Google Scholar 

  • Okiobe ST, Pirhofer-Walzl K, Leifheit EF, Rillig MC, Veresoglou SD (2022) Proximal and distal mechanisms through which arbuscular mycorrhizal associations alter terrestrial denitrification. Plant Soil 476:315–336

    Article  CAS  Google Scholar 

  • Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv Water Resour 30:1505–1527

    Article  Google Scholar 

  • Ordonez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 11:e0154438

    Article  PubMed  PubMed Central  Google Scholar 

  • Palla M, Battini F, Cristani C, Giovannetti M, Squartini A, Agnolucci M (2018) Quorum sensing in rhizobia isolated from the spores of the mycorrhizal symbiont Rhizophagus intraradices. Mycorrhiza 28:773–778

    Article  PubMed  Google Scholar 

  • Pandit A, Kochar M, Srivastava S, Johny L, Adholeya A (2022a) Diversity and functionalities of unknown mycorrhizal fungal microbiota. Microbiol Res 256:126940

    Article  CAS  PubMed  Google Scholar 

  • Pandit A, Johny L, Srivastava S, Adholeya A, Cahill D, Brau L, Kochar M (2022b) Recreating in vitro tripartite mycorrhizal associations through functional bacterial biofilms. Appl Microbiol Biotechnol 106:4237–4250

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Priyadharsini P, Rojamala K, Ravi RK, Muthuraja R, Nagaraj K, Muthukumar T (2016) Mycorrhizosphere: the extended rhizosphere and its significance. Plant-Microbe Interaction: An Approach to Sustainable Agriculture 97–124

  • Reinhardt D, Roux C, Corradi N, Di Pietro A (2021) Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens. Trends Plant Sci 26:111–123

    Article  CAS  PubMed  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan S, Prasanna R (2021) Mycorrhizae Helper bacteria: unlocking their potential as bioenhancers of plant-arbuscular mycorrhizal fungal associations. Microb Ecol

  • Santos LF, Olivares FL (2021) Plant microbiome structure and benefits for sustainable agriculture. Curr Plant Biol 26

  • Sarhan MS, Patz S, Hamza MA, Youssef HH, Mourad EF, Fayez M, Murphy B, Ruppel S, Hegazi NA (2018) G3 PhyloChip analysis confirms the promise of plant-based culture media for unlocking the composition and diversity of the maize root microbiome and for recovering unculturable candidate divisions/phyla. Microbes Environ 33:317–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarhan MS, Hamza MA, Youssef HH et al (2019) Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media - A review. J Adv Res 19:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Hachiya S, Inamura N, Ezawa T, Cheng W, Tawaraya K (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 29:599–605

    Article  CAS  PubMed  Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (1995) The occurrence of calcofluor and lectin binding polysaccharides in the outer wall of arbuscular mycorrhizal fungal spores. Mycol Res 99:1249–1252

    Article  CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    Article  PubMed  Google Scholar 

  • Selvakumar G, Krishnamoorthy R, Kim K, Sa TM (2016) Genetic diversity and association characters of bacteria isolated from arbuscular mycorrhizal fungal spore walls. PLoS ONE 11:e0160356

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Shagol CC, Kim K, Han S, Sa T (2018) Spore associated bacteria regulates maize root K(+)/Na(+) ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biol 18:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Compant S, Ballhausen MB, Ruppel S, Franken P (2020) The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol Res 240:126556

    Article  CAS  PubMed  Google Scholar 

  • Smee MR, Raines SA, Ferrari J (2021) Genetic identity and genotype x genotype interactions between symbionts outweigh species level effects in an insect microbiome. ISME J 15:2537–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal Symbiosis. Elsevier Ltd

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Steffan BN, Venkatesh N, Keller NP (2020) Let’s get physical: bacterial-fungal interactions and their consequences in agriculture and health. J Fungi (Basel) 6

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker P, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci USA 115:E5213–E5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587–603

    Article  PubMed  Google Scholar 

  • Sun X, Chen W, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge J, Harrison MJ, Fei Z (2019) Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol 221:1556–1573

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Degawa Y, Nishizawa T, Ohta H, Narisawa K (2020) Aposymbiosis of a Burkholderiaceae-related endobacterium impacts on sexual reproduction of its fungal host. Microb Environ 35

  • Taktek S, St-Arnaud M, Piche Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22

    Article  CAS  PubMed  Google Scholar 

  • Taktek S, Trépanier M, Servin PM, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    Article  CAS  Google Scholar 

  • Tarkka MT, Drigo B, Deveau A (2018) Mycorrhizal microbiomes. Mycorrhiza 28:403–409

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    Article  PubMed  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Ujvari G, Turrini A, Avio L, Agnolucci M (2021) Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza 31:527–544

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Venice F, Desirò A, Silva G, Salvioli A, Bonfante P (2020a) The mosaic architecture of NRPS-PKS in the arbuscular mycorrhizal fungus Gigaspora margarita shows a domain with bacterial signature. Front Microbiol 11

  • Venice F, Chialva M, Domingo G et al (2021) Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant J 108:1547–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venice F, Ghignone S, Salvioli di Fossalunga A et al (2020b) At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol 22:122–141

    Article  PubMed  Google Scholar 

  • Walley FL, Germida JJ (1995) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49

    Article  Google Scholar 

  • Wang F, Zhang L, Zhou J, Rengel Z, George TS, Feng G (2022a) Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant Soil

  • Wang G, George TS, Pan Q, Feng G, Zhang L (2022b) Two isolates of Rhizophagus irregularis select different strategies for improving plants phosphorus uptake at moderate soil P availability. Geoderma 421

  • Wang L, Zhang L, George TS, Feng G (2022c) A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytol

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Xu Y, Chen Z, Li X, Tan J, Liu F, Wu J (2022) Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth. Funct Eco n/a

  • Yang W, Li S, Wang X, Liu F, Li X, Zhu X (2021a) Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl Soil Eco 167

  • Yuan MM, Kakouridis A, Starr E, Nguyen N, Shi S, Zhou J, Firestone M, Pett-Ridge J, Nuccio E (2021) Fungal-bacterial cooccurrence patterns differ between arbuscular mycorrhizal fungi and nonmycorrhizal fungi across soil niches. mBio 12

  • Zhang L, Feng G, Declerck S (2018a) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhou J, George TS, Limpens E, Feng G (2021) Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shi N, Fan J, Wang F, George TS, Feng G (2018b) Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environ Microbiol 20:2639–2651

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Chai X, Zhang L, George TS, Wang F, Feng G (2020) Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Said Fared and UM6P Services & Supports for assistance with the graphical design for Fig. 1. We also thank Andrew Blakney for commenting on the manuscript.

Funding

This work was supported by funding from the OCP Group (Projects AS-78 and AS-85, awarded to MH), and the Mohammed VI Polytechnic University (UM6P).

Author information

Authors and Affiliations

Authors

Contributions

SB collected and analyzed the literature and wrote the manuscript. KASM contributed to the data collection and analysis of the literature and wrote the manuscript. MH conceived the study, acquired funding, supervised the work, and contributed to the writing and preparation of figures. All authors commented on the manuscript and approved the final version.

Corresponding author

Correspondence to Mohamed Hijri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basiru, S., Ait Si Mhand, K. & Hijri, M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza 33, 119–137 (2023). https://doi.org/10.1007/s00572-023-01107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-023-01107-7

Keywords

Navigation