Skip to main content
Log in

Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi interact with bacteria (AM fungi-associated bacteria, AMB) in the mycorrhizosphere. We previously identified a set of AMB that enhance AM fungal colonization, plant growth, and inhibit pathogens. Here, we used transformed carrot root cultures in a two-compartment plate system for further in vitro studies on interactions taking place among Glomus irregulare (syn.Glomus intraradices), AMB, and plant pathogens. We found that exudates of G. irregulare stimulated growth of all ten AMB isolates tested in multi-well plates. AMB growth stimulation was observed also during co-cultivation of three of these AMB with G. irregulare in the hyphal compartment. In addition, co-cultivation stimulated growth of G. irregulare hyphae and spore production, as well as G. irregulare root colonization. GC/MS analysis in a preliminary screening of metabolites revealed differences in concentrations of several identified but also unidentified compounds in G. irregulare hyphal exudates. Exudates in presence of three different AMB isolates co-cultivated with G. irregulare contained several additional compounds that differed in amount compared with G. irregulare alone. The results indicate that G. irregulare exudates contain carbohydrates, amino acids, and unidentified compounds that could serve as a substrate to stimulate AMB growth. With regard to effects on plant pathogens, growth inhibition of Rhizoctonia solani, Verticillium dahliae, and Pectobacterium carotovorum ssp. carotovorum was evident in the presence of the AMB isolates tested together with the G. irregulare exudates. These in vitro studies suggest that G. irregulare and AMB stimulate growth of each other and that they together seem to provide an additive effect against growth of both fungal and bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alström S (1987) Influence of root-zone inhabiting bacteria on growth of plants and soil-borne fungal pathogens. Ph. D. thesis. 14, Swedish Univ of Agricultural Sciences, Uppsala, Sweden

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Arthurson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  PubMed  CAS  Google Scholar 

  • Barea JM (1997) Mycorrhiza–bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting Rhizobacteria. OECD Press, Paris, France, pp 150–158

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Becard G, Piche Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  CAS  Google Scholar 

  • Bernier SP, Letoffe S, Delepierre M, Ghigo J-M (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81:705–716

    Article  PubMed  CAS  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Bharadwaj DP, Lundquist P-O, Persson P, Alström S (2008a) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj DP, Lundquist P-O, Alström S (2008b) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localised and systemic resistance to Phytophthora parasitica in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gullberg J, Jonsson P, Nordstrom A, Sjostrom M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal Biochem 331:283–295

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol 45:545–551

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Jonsson P, Johansson A, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjöström M, Antti H, Moritz T (2005) High through-put data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1983) Interaction between a Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351

    Article  CAS  Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontrol 52:863–875

    Article  Google Scholar 

  • Linderman RG (2008) The mycorrhizosphere phenomenon. In: Feldman F, Kapulnik Y, Barr J (eds) Mycorrhiza works. Deutsche Phytomedizinische Gesellschaft, Braunschweig, pp 341–355. ISBN 978-3-941261-01-3

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bødker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  PubMed  CAS  Google Scholar 

  • Mark GL, Cassells AC (1996) Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant Soil 185:233–238

    Article  CAS  Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986a) Selective influence on populations of rhizosphere or rhizosplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986b) Response of subterranean clover to dual-inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 8:185–190

    Article  Google Scholar 

  • Mosse B (1962) The establishment of vesicular–arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  PubMed  CAS  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, Van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  PubMed  CAS  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of nonmycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Offre P, Pivato B, Mazurier S, Siblot S, Berta G, Lemanceau P, Mougel C (2008) Microdiversity of Burkholderiales associated with mycorrhized and non-mycorrhized roots of Medicago truncatula. FEMS Microbiol Ecol 65:180–192

    Article  PubMed  CAS  Google Scholar 

  • Pivato B, Gamalero E, Lemanceau P, Berta G (2008) Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiol Lett 289:173–180

    Article  PubMed  CAS  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic, New York, pp 299–343

    Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122

    Article  Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces eutieches root rot of peas. Phytopathologische Zeitschrift 114:31–41

    Article  Google Scholar 

  • Rosenfeld HJ, Vogt G, Aaby K, Olsen E (2004) Interaction of Terpenes with Sweet Taste in Carrots (Daucus carota L.). In: McCreight JD and Ryder EJ (eds), Acta Hort. 637, pp 377–386, Proc. XXVI IHC—Advances in Vegetable Breeding

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva E, Bohnert HJ (1998) Plant stress adaptations—making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  PubMed  Google Scholar 

  • Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerji KG, Chamalo BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic Plenum Publishers, New York, pp 173–196

    Chapter  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stockinger H, Walker C, Schüβler A (2009) Glomus intraradices DAOM 197198, a model fungus in arbuscular mycorrhiza research is not Glomus intraradices. New Phytol 183:1176–1181

    Article  PubMed  Google Scholar 

  • Toljander J, Lindahl B, Paul L, Elfstrand M, Finlay R (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  PubMed  CAS  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhiza in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Zambolim L, Schenck NC (1983) Reduction of the effects of pathogenic root rot infecting fungi on soybean by the mycorrhizal fungus Glomus mosseae. Phytopathol 73:1402–1405

    Article  Google Scholar 

Download references

Acknowledgments

We thank Krister Lundgren, Umeå Plant Science Centre, Umeå University, for excellent metabolite analysis. This work was financially supported by the Strategic Programme on Interactions between Micro-organisms and Plants (IMOP) at the Swedish University of Agricultural Sciences (SLU), Uppsala, the Carl Tryggers Foundation for Scientific Research, Stockholm, Stiftelsen Lantbruksforskning (SLF), Stockholm, and the Swedish Board of Agriculture (SJV), Norrköping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Olof Lundquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharadwaj, D.P., Alström, S. & Lundquist, PO. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22, 437–447 (2012). https://doi.org/10.1007/s00572-011-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0418-7

Keywords

Navigation