Skip to main content

Advertisement

Log in

Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Interleukin-33 (IL-33), IL-36, and IL-38 are members of the IL-1 cytokine family. The expression of each cytokine has been reported to be increased in the inflamed mucosa of patients with inflammatory bowel disease (IBD). IL-33 and IL-36 have been studied for pro- and anti-inflammatory functions, and IL-38 has been characterized as an anti-inflammatory cytokine by antagonizing the IL-36 receptor (IL-36R). IL-33 is a nuclear cytokine constitutively expressed by certain cell types such as epithelial, endothelial, and fibroblast-like cells and released on necrotic cell death. IL-33 mainly induces type 2 immune response through its receptor suppression tumorigenicity 2 (ST2) from Th2 cells and type 2 innate lymphoid cells (ILC2s), but also by stimulating Th1 cells, regulatory T cells, and CD8+ T cells. IL-36 cytokines consist of three agonists: IL-36α, IL-36β, and IL-36γ, and two receptor antagonists: IL-36R antagonist (IL-36Ra) and IL-38. All IL-36 cytokines bind to the IL-36R complex and exert various functions through NF-κB and mitogen-activated protein kinase (MAPK) pathways in inflammatory settings. IL-33 and IL-36 also play a crucial role in intestinal fibrosis characteristic manifestation of CD. In this review, we focused on the current understanding of the pro- and anti-inflammatory roles of IL-33, IL-36, and IL38 in experimental colitis and IBD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12:720–7.

    Article  Google Scholar 

  2. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39:1003–18.

    Article  CAS  Google Scholar 

  3. Williams MA, O’Callaghan A, Corr SC. IL-33 and IL-18 in inflammatory bowel disease etiology and microbial interactions. Front Immunol. 2019;10:1091.

    Article  CAS  Google Scholar 

  4. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.

    Article  CAS  Google Scholar 

  5. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281:154–68.

    Article  CAS  Google Scholar 

  6. Eberl G, Colonna M, Di Santo JP, Mckenzie AN. Innate lymphoid cells Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348:aaa6566.

    Article  Google Scholar 

  7. Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245–8.

    Article  CAS  Google Scholar 

  8. Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine. 2017;100:1–10.

    Article  CAS  Google Scholar 

  9. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–89.

    Article  CAS  Google Scholar 

  10. Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.

    Article  CAS  Google Scholar 

  11. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1-and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20:1019–30.

    Article  CAS  Google Scholar 

  12. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38.

    Article  CAS  Google Scholar 

  13. Nishida A, Andoh A, Imaeda H, Inatomi O, Shiomi H, Fujiyama Y. Expression of interleukin 1-like cytokine interleukin 33 and its receptor complex (ST2L and IL1RAcP) in human pancreatic myofibroblasts. Gut. 2010;59:531–41.

    Article  CAS  Google Scholar 

  14. Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol. 2016;17:122–31.

    Article  CAS  Google Scholar 

  15. Martin MU. Special aspects of interleukin-33 and the IL-33 receptor complex. Semin Immunol. 2013;25:449–57.

    Article  CAS  Google Scholar 

  16. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE. 2008;3: e3331.

    Article  Google Scholar 

  17. Sundlisaeter E, Edelmann RJ, Hol J, et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol. 2012;181:1099–111.

    Article  CAS  Google Scholar 

  18. Lefrancais E, Roga S, Gautier V, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012;109:1673–8.

    Article  CAS  Google Scholar 

  19. Lefrancais E, Duval A, Mirey E, et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci USA. 2014;111:15502–7.

    Article  CAS  Google Scholar 

  20. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA. 2009;106:9021–6.

    Article  CAS  Google Scholar 

  21. Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–7.

    Article  CAS  Google Scholar 

  22. Bessa J, Meyer CA, de Vera Mudry MC, et al. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmun. 2014;55:33–41.

    Article  CAS  Google Scholar 

  23. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT. Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol. 2008;84:631–43.

    Article  CAS  Google Scholar 

  24. Hara K, Iijima K, Elias MK, et al. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa. J Immunol. 2014;192:4032–42.

    Article  CAS  Google Scholar 

  25. Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186:4375–87.

    Article  CAS  Google Scholar 

  26. Kobori A, Yagi Y, Imaeda H, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007.

    Article  CAS  Google Scholar 

  27. Muzes G, Molnar B, Tulassay Z, Sipos F. Changes of the cytokine profile in inflammatory bowel diseases. World J Gastroenterol. 2012;18:5848–61.

    Article  CAS  Google Scholar 

  28. Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, Paglinco SR, Antonioli L, Rolandelli RH. Crohn’s disease and ulcerative colitis show unique cytokine profiles. Cureus. 2017;9: e1177.

    Google Scholar 

  29. Beltran CJ, Nunez LE, Diaz-Jimenez D, et al. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1097–107.

    Article  Google Scholar 

  30. Gundersen MD, Goll R, Hol J, et al. Loss of interleukin 33 expression in colonic crypts—a potential marker for disease remission in ulcerative colitis. Sci Rep. 2016;6:35403.

    Article  CAS  Google Scholar 

  31. Pastorelli L, Garg RR, Hoang SB, et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci USA. 2010;107:8017–22.

    Article  CAS  Google Scholar 

  32. Sponheim J, Pollheimer J, Olsen T, et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol. 2010;177:2804–15.

    Article  CAS  Google Scholar 

  33. Sedhom MA, Pichery M, Murdoch JR, et al. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut. 2013;62:1714–23.

    Article  CAS  Google Scholar 

  34. Pushparaj PN, Li D, Komai-Koma M, et al. Interleukin-33 exacerbates acute colitis via interleukin-4 in mice. Immunology. 2013;140:70–7.

    Article  CAS  Google Scholar 

  35. Seidelin JB, Coskun M, Kvist PH, Holm TL, Holgersen K, Nielsen OH. IL-33 promotes GATA-3 polarization of gut-derived T cells in experimental and ulcerative colitis. J Gastroenterol. 2015;50:180–90.

    Article  CAS  Google Scholar 

  36. Imaeda H, Andoh A, Aomatsu T, et al. Interleukin-33 suppresses notch ligand expression and prevents goblet cell depletion in dextran sulfate sodium-induced colitis. Int J Mol Med. 2011;28:573–8.

    CAS  Google Scholar 

  37. Hufford MM, Kaplan MH. A gut reaction to IL-9. Nat Immunol. 2014;15:599–600.

    Article  CAS  Google Scholar 

  38. Duan L, Chen J, Zhang H, et al. Interleukin-33 ameliorates experimental colitis through promoting Th2/Foxp3 (+) regulatory T-cell responses in mice. Mol Med. 2012;18:753–61.

    Article  CAS  Google Scholar 

  39. Tu L, Chen J, Xu D, et al. IL-33-induced alternatively activated macrophage attenuates the development of TNBS-induced colitis. Oncotarget. 2017;8:27704–14.

    Article  Google Scholar 

  40. Seo DH, Che X, Kwak MS, et al. Interleukin-33 regulates intestinal inflammation by modulating macrophages in inflammatory bowel disease. Sci Rep. 2017;7:851.

    Article  Google Scholar 

  41. Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA. 2015;112:10762–7.

    Article  CAS  Google Scholar 

  42. Hirai F, Andoh A, Ueno F, et al. Efficacy of endoscopic balloon dilation for small bowel strictures in patients With Crohn’s disease: a nationwide, multi-centre, open-label prospective cohort study. J Crohns Colitis. 2018;12:394–401.

    Article  Google Scholar 

  43. Nakayama T, Hirahara K, Onodera A, et al. Th2 cells in health and disease. Annu Rev Immunol. 2017;35:53–84.

    Article  CAS  Google Scholar 

  44. Bailey JR, Bland PW, Tarlton JF, et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS ONE. 2012;7: e52332.

    Article  CAS  Google Scholar 

  45. Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature. Nat Immunol. 2010;11:973.

    Article  CAS  Google Scholar 

  46. Tripodi D, Conti F, Rosati M, et al. IL-36 a new member of the IL-1 family cytokines. J Biol Regul Homeost Agents. 2012;26:7–14.

    CAS  Google Scholar 

  47. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10:89–102.

    Article  CAS  Google Scholar 

  48. Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem. 2004;279:13677–88.

    Article  CAS  Google Scholar 

  49. Sims JE, Nicklin MJ, Bazan JF, et al. A new nomenclature for IL-1-family genes. Trends Immunol. 2001;22:536–7.

    Article  CAS  Google Scholar 

  50. Elias M, Zhao S, Le HT, et al. IL-36 in chronic inflammation and fibrosis—bridging the gap? J Clin Invest. 2021. https://doi.org/10.1172/JCI144336.

    Article  Google Scholar 

  51. Clancy DM, Sullivan GP, Moran HBT, et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 2018;22:2937–50.

    Article  CAS  Google Scholar 

  52. Towne JE, Renshaw BR, Douangpanya J, et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J Biol Chem. 2011;286:42594–602.

    Article  CAS  Google Scholar 

  53. Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22.

    Article  CAS  Google Scholar 

  54. Macleod T, Doble R, McGonagle D, et al. Neutrophil Elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 receptor antagonist. Sci Rep. 2016;6:24880.

    Article  CAS  Google Scholar 

  55. Martin U, Scholler J, Gurgel J, Renshaw B, Sims JE, Gabel CA. Externalization of the leaderless cytokine IL-1F6 occurs in response to lipopolysaccharide/ATP activation of transduced bone marrow macrophages. J Immunol. 2009;183:4021–30.

    Article  CAS  Google Scholar 

  56. Dos Santos JPS, Ribeiro RCB, Faria JV, et al. Synthesis, biological evaluation and molecular modeling studies of novel triazole-linked menadione-furan derivatives as inhibitors. J Bioenerg Biomembr. 2022. https://doi.org/10.1007/s10863-022-09947-2.

    Article  Google Scholar 

  57. Ngo VL, Kuczma M, Maxim E, Denning TL. IL-36 cytokines and gut immunity. Immunology. 2021;163:145–54.

    Article  CAS  Google Scholar 

  58. Mulero JJ, Pace AM, Nelken ST, et al. IL1HY1: a novel interleukin-1 receptor antagonist gene. Biochem Biophys Res Commun. 1999;263:702–6.

    Article  CAS  Google Scholar 

  59. Bassoy EY, Towne JE, Gabay C. Regulation and function of interleukin-36 cytokines. Immunol Rev. 2018;281:169–78.

    Article  CAS  Google Scholar 

  60. Yuan ZC, Xu WD, Liu XY, Liu XY, Huang AF, Su LC. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol. 2019;10:2532.

    Article  CAS  Google Scholar 

  61. Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE. Four new members expand the interleukin-1 superfamily. J Biol Chem. 2000;275:1169–75.

    Article  CAS  Google Scholar 

  62. Frey S, Derer A, Messbacher ME, et al. The novel cytokine interleukin-36alpha is expressed in psoriatic and rheumatoid arthritis synovium. Ann Rheum Dis. 2013;72:1569–74.

    Article  CAS  Google Scholar 

  63. Blumberg H, Dinh H, Trueblood ES, et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med. 2007;204:2603–14.

    Article  CAS  Google Scholar 

  64. Takahashi K, Nishida A, Shioya M, et al. Interleukin (IL)-1beta Is a strong inducer of IL-36gamma expression in human colonic myofibroblasts. PLoS ONE. 2015;10: e0138423.

    Article  Google Scholar 

  65. Bachmann M, Scheiermann P, Hardle L, Pfeilschifter J, Muhl H. IL-36gamma/IL-1F9, an innate T-bet target in myeloid cells. J Biol Chem. 2012;287:41684–96.

    Article  CAS  Google Scholar 

  66. Lian LH, Milora KA, Manupipatpong KK, Jensen LE. The double-stranded RNA analogue polyinosinic-polycytidylic acid induces keratinocyte pyroptosis and release of IL-36gamma. J Invest Dermatol. 2012;132:1346–53.

    Article  CAS  Google Scholar 

  67. Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol. 2015;97:645–52.

    Article  CAS  Google Scholar 

  68. Leon G, Hussey S, Walsh PT. The diverse roles of the IL-36 family in gastrointestinal inflammation and resolution. Inflamm Bowel Dis. 2021;27:440–50.

    Article  Google Scholar 

  69. Leon G, Hernandez Santana YE, Irwin N, et al. IL-36 cytokines imprint a colitogenic phenotype on CD4(+) T helper cells. Mucosal Immunol. 2022;15:491–503.

    Article  CAS  Google Scholar 

  70. Vigne S, Palmer G, Lamacchia C, et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood. 2011;118:5813–23.

    Article  CAS  Google Scholar 

  71. Foster AM, Baliwag J, Chen CS, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192:6053–61.

    Article  CAS  Google Scholar 

  72. Russell SE, Horan RM, Stefanska AM, et al. IL-36alpha expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunol. 2016;9:1193–204.

    Article  CAS  Google Scholar 

  73. Harusato A, Abo H, Ngo VL, et al. IL-36gamma signaling controls the induced regulatory T cell-Th9 cell balance via NFkappaB activation and STAT transcription factors. Mucosal Immunol. 2017;10:1455–67.

    Article  CAS  Google Scholar 

  74. Nishida A, Hidaka K, Kanda T, et al. Increased expression of interleukin-36, a member of the interleukin-1 cytokine family, in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22:303–14.

    Article  Google Scholar 

  75. Kanda T, Nishida A, Takahashi K, et al. Interleukin (IL)-36alpha and IL-36gamma induce proinflammatory mediators from human colonic subepithelial myofibroblasts. Front Med (Lausanne). 2015;2:69.

    Google Scholar 

  76. Boutet MA, Bart G, Penhoat M, et al. Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol. 2016;184:159–73.

    Article  CAS  Google Scholar 

  77. Xie C, Yan W, Quan R, et al. Interleukin-38 is elevated in inflammatory bowel diseases and suppresses intestinal inflammation. Cytokine. 2020;127: 154963.

    Article  CAS  Google Scholar 

  78. Scheibe K, Backert I, Wirtz S, et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut. 2017;66:823–38.

    Article  CAS  Google Scholar 

  79. Scheibe K, Kersten C, Schmied A, et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology. 2019;156(1082–97): e11.

    Google Scholar 

  80. Zhu J, Xu Y, Li Z, Liu S, Fu W, Wei Y. Interleukin-36beta exacerbates DSS-induce acute colitis via inhibiting Foxp3(+) regulatory T cell response and increasing Th2 cell response. Int Immunopharmacol. 2022;108: 108762.

    Article  CAS  Google Scholar 

  81. Medina-Contreras O, Harusato A, Nishio H, et al. Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J Immunol. 2016;196:34–8.

    Article  CAS  Google Scholar 

  82. Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53:465–74.

    Article  CAS  Google Scholar 

  83. Ngo VL, Abo H, Maxim E, et al. A cytokine network involving IL-36gamma, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad Sci USA. 2018;115:E5076–85.

    Article  CAS  Google Scholar 

  84. Mao R, Rieder F. Cooling down the hot potato: anti-interleukin 36 therapy prevents and treats experimental intestinal fibrosis. Gastroenterology. 2019;156:871–3.

    Article  Google Scholar 

  85. Reinisch W, Panes J, Khurana S, et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015;64:894–900.

    Article  CAS  Google Scholar 

  86. Reinisch W, de Villiers W, Bene L, et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–42.

    Article  Google Scholar 

  87. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.

    Article  CAS  Google Scholar 

  88. Bachelez H, Choon SE, Marrakchi S, et al. Inhibition of the interleukin-36 pathway for the treatment of generalized pustular psoriasis. New Engl J Med. 2019;380:981–3.

    Article  Google Scholar 

  89. Boehringer Ingelheim. NCT03752970: A study testing how BI655130 works in patients with fistulizing Crohn's disease. https://clinicaltrials.gov/ct2/show/NCT03752970.

  90. Boehringer Ingelheim. NCT03482635: BI655130 (SPESOLIMAB) induction treatment in patients with moderate-to-severe ulcerative colitis. https://clinicaltrials.gov/ct2/show/NCT03482635.

  91. Boehringer Ingelheim. NCT03123120: A Study in patients with mild or moderate ulcerative colitis who take a TNF inhibitor. The study investigates whether bowel inflammation improves when patients take BI655130 in addition to their current therapy. https://www.clinicaltrials.gov/ct2/show/NCT03123120.

  92. Boehringer Ingelheim. NCT03648541: BI655130 long-term treatment in patients with moderate-to severe ulcerative colitis. https://clinicaltrials.gov/ct2/show/NCT03648541.

  93. Hojen JF, Kristensen MLV, McKee AS, et al. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat Immunol. 2019;20:1138–49.

    Article  Google Scholar 

  94. Bensen JT, Dawson PA, Mychaleckyj JC, Bowden DW. Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J Interferon Cytokine Res. 2001;21:899–904.

    Article  CAS  Google Scholar 

  95. de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in health and disease. Cytokine. 2022;152: 155824.

    Article  Google Scholar 

  96. Xu WD, Huang AF. Role of interleukin-38 in chronic inflammatory diseases: a comprehensive review. Front Immunol. 2018;9:1462.

    Article  Google Scholar 

  97. Han Y, Mora J, Huard A, et al. IL-38 ameliorates skin inflammation and limits IL-17 production from gammadelta T Cells. Cell Rep. 2019;27(835–46): e5.

    Google Scholar 

  98. Mercurio L, Morelli M, Scarponi C, et al. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis. 2018;9:1104.

    Article  Google Scholar 

  99. Xu WD, Su LC, He CS, Huang AF. Plasma interleukin-38 in patients with rheumatoid arthritis. Int Immunopharmacol. 2018;65:1–7.

    Article  CAS  Google Scholar 

  100. Takenaka SI, Kaieda S, Kawayama T, et al. IL-38: a new factor in rheumatoid arthritis. Biochem Biophys Rep. 2015;4:386–91.

    Google Scholar 

  101. Matsuoka M, Kawayama T, Tominaga M, et al. Attenuated airway eosinophilic inflammations in IL-38 knockout mouse model. Kurume Med J. 2019;65:37–46.

    Article  Google Scholar 

  102. Rudloff I, Godsell J, Nold-Petry CA, et al. Brief report: interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:3219–25.

    Article  CAS  Google Scholar 

  103. Ciccia F, Accardo-Palumbo A, Alessandro R, et al. Interleukin-36alpha axis is modulated in patients with primary Sjogren’s syndrome. Clin Exp Immunol. 2015;181:230–8.

    Article  CAS  Google Scholar 

  104. Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol. 2016;8:426–38.

    Article  CAS  Google Scholar 

  105. van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA. 2012;109:3001–5.

    Article  Google Scholar 

  106. Ohno M, Imai T, Chatani M, et al. The anti-inflammatory and protective role of interleukin-38 in inflammatory bowel disease. J Clin Biochem Nutr. 2022;70:64–71.

    Article  CAS  Google Scholar 

  107. de Graaf DM, Wang RX, Amo-Aparicio J, et al. IL-38 gene deletion worsens murine colitis. Front Immunol. 2022;13: 840719.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED) under Grant number JP20gm1010008h9904 (AA), and in part by a Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant number 22K07664(AA), and in part by a Health and Labour Sciences Research Grants for Research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan under Grant number 20FC1037 (AA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Andoh.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andoh, A., Nishida, A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 58, 69–78 (2023). https://doi.org/10.1007/s00535-022-01936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01936-x

Keywords

Navigation