Skip to main content
Log in

IL-33 promotes GATA-3 polarization of gut-derived T cells in experimental and ulcerative colitis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

In the respiratory mucosa, interleukin (IL)-33, has been shown to enhance T helper 2 (TH2)-type responses through the master regulatory gene GATA-3. IL-33 is upregulated in ulcerative colitis (UC), and the aim was to assess if IL-33 holds a similar key position in the shaping of the immune response in experimental colitis (piroxicam-accelerated colitis (PAC) in IL-10 / mice, dextran sodium sulfate (DSS) model) and UC.

Methods

Colonic IL-33 expression was determined in UC (8 active UC, 8 quiescent UC, and 7 controls) and experimental colitis. Mesenteric lymph node (MesLN) T cells were isolated from PAC IL-10 / mice and stimulated with IL-33.

Results

The colonic IL-33 expression was significantly upregulated all forms of colitis (P < 0.01) and correlated with disease severity score and inflammation (P < 0.001), and with GATA-3 expression levels (P < 0.01); no correlation with the TH1-specific T-bet expression was observed. MesLN T cells stimulated with IL-33 had increased GATA-3 expression, and showed an IL-33 dose-dependent increase in secreted TH2-type cytokines, whereas this effect was abolished by blocking IL-33 signaling. The non-TH2-type cytokine IL-17 was upregulated by IL-33 but in a T cell receptor dependent manner, as opposed to TH2-type cytokines, which required only IL-33 stimulation.

Conclusions

The study demonstrates that intestinal IL-33 is capable of inducing GATA-3 in mucosal T cells, and suggests that IL-33 is a key mediator of pathological TH2 and non-TH2-type responses in intestinal inflammation. Blocking IL-33 signaling could be a feasible option in the treatment of UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seidelin JB, Bjerrum JT, Coskun M, et al. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett. 2010;128:80–5.

    Article  CAS  PubMed  Google Scholar 

  2. Pastorelli L, Garg RR, Hoang SB, et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci USA. 2010;107:8017–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sponheim J, Pollheimer J, Olsen T, et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol. 2010;177(6):2804–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nile CJ, Barksby E, Jitprasertwong P, et al. Expression and regulation of interleukin-33 in human monocytes. Immunology. 2010;130:172–80.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hudson CA, Christophi GP, Gruber RC, et al. Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol. 2008;84:631–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kobori A, Yagi Y, Imaeda H, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45(10):999–1007.

    Article  CAS  PubMed  Google Scholar 

  7. Seidelin JB, Rogler G, Nielsen OH. A role for interleukin-33 in T(H)2-polarized intestinal inflammation? Mucosal Immunol. 2011;4:496–502.

    Article  CAS  PubMed  Google Scholar 

  8. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  9. Kurowska-Stolarska M, Kewin P, Murphy G, et al. IL-33 induces antigen-specific IL-5 + T cells and promotes allergic-induced airway inflammation independent of IL-4. J Immunol. 2008;181:4780–90.

    Article  CAS  PubMed  Google Scholar 

  10. Komai-Koma M, Xu D, Li Y, et al. IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol. 2007;37:2779–86.

    Article  CAS  PubMed  Google Scholar 

  11. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4 + lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–70.

    CAS  PubMed  Google Scholar 

  12. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 2009;58:1152–67.

  14. Hamilton MJ, Snapper SB, Blumberg RS. Update on biologic pathways in inflammatory bowel disease and their therapeutic relevance. J Gastroenterol. 2012;47:1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.

  16. Vahedi G, Kanno Y, Sartorelli V, O’Shea JJ. Transcription factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology. 2013;139:294–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ben-Sasson SZ, Le GG, Conrad DH, et al. IL-4 production by T cells from naive donors. IL-2 is required for IL-4 production. J Immunol. 1990;145:1127–36.

    CAS  PubMed  Google Scholar 

  18. Zhu J, Yamane H, Cote-Sierra J, et al. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006;16:3–10.

    Article  CAS  PubMed  Google Scholar 

  19. Le GG, Ben-Sasson SZ, Seder R, et al. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990;172:921–9.

    Article  Google Scholar 

  20. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  21. Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hong J, Bae S, Jhun H, et al. Identification of constitutively active interleukin 33 (IL-33) splice variant. J Biol Chem. 2011;286:20078–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA. 2009;106:9021–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G. Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem. 2009;284:19420–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.

    Article  CAS  PubMed  Google Scholar 

  27. Lopetuso LR, Chowdhry S, Pizarro TT. Opposing functions of classic and novel IL-1 family members in gut health and disease. Front Immunol. 2013;4:181.

  28. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.

    CAS  PubMed  Google Scholar 

  29. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    CAS  PubMed  Google Scholar 

  30. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–67.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson MS, Ramalingam TR, Rivollier A, et al. Colitis and intestinal inflammation in IL10−/− mice results from IL-13Ralpha2-mediated attenuation of IL-13 activity. Gastroenterology. 2011;140:254–64.

  32. Holgersen K, Kvist PH, Markholst H, et al. Characterisation of enterocolitis in the piroxicam-accelerated interleukin-10 knock out mouse—a model mimicking inflammatory bowel disease. J Crohns Colitis. 2013;8(2):147–60.

  33. Holgersen K, Kvist PH, Hansen AK, Holm TL. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice. Int Immunopharmacol. 2014;21:137–47.

    Article  CAS  PubMed  Google Scholar 

  34. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317:1625–9.

    Article  CAS  PubMed  Google Scholar 

  35. Langholz E, Munkholm P, Davidsen M, et al. Changes in extent of ulcerative colitis: a study on the course and prognostic factors. Scand J Gastroenterol. 1996;31:260–6.

    Article  CAS  PubMed  Google Scholar 

  36. Langholz E. Ulcerative colitis. An epidemiological study based on a regional inception cohort, with special reference to disease course and prognosis. Dan Med Bull. 1999;46:400–15.

    CAS  PubMed  Google Scholar 

  37. Kjellev S, Thim L, Pyke C, Poulsen SS. Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental colitis in mice. Dig Dis Sci. 2007;52:1050–9.

    Article  CAS  PubMed  Google Scholar 

  38. Murthy SN, Cooper HS, Shim H, et al. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci. 1993;38:1722–34.

    Article  CAS  PubMed  Google Scholar 

  39. Bleich A, Mahler M, Most C, et al. Refined histopathologic scoring system improves power to detect colitis QTL in mice. Mamm Genome. 2004;15:865–71.

    Article  PubMed  Google Scholar 

  40. Beltrán CJ, Núñez LE, Díaz-Jiménez D, et al. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1097–107.

    Article  PubMed  Google Scholar 

  41. Niessner M, Volk BA. Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin Exp Immunol. 1995;101:428–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Specht S, Arriens S, Hoerauf A. Induction of chronic colitis in IL-10 deficient mice requires IL-4. Microbes Infect. 2006;8:694–703.

    Article  CAS  PubMed  Google Scholar 

  43. Pushparaj PN, Tay HK, H’ng SC, et al. The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA. 2009;106:9773–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10:225–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chackerian AA, Oldham ER, Murphy EE, et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 2007;179:2551–5.

    Article  CAS  PubMed  Google Scholar 

  46. Greenfeder SA, Nunes P, Kwee L, et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J Biol Chem. 1995;270:13757–65.

    Article  CAS  PubMed  Google Scholar 

  47. Funakoshi-Tago M, Tago K, Hayakawa M, et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell Signal. 2008;20:1679–86.

    Article  CAS  PubMed  Google Scholar 

  48. Guo L, Wei G, Zhu J, et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc Natl Acad Sci USA. 2009;106:13463–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Halim TY, Krauss RH, Sun AC, Takei F. VLung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity. 2012;36:451–63.

    Article  CAS  PubMed  Google Scholar 

  50. Oboki K, Ohno T, Kajiwara N, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 2010;107:18581–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sartor RB. Innate immunity in the pathogenesis and therapy of IBD. J Gastroenterol. 2003;38(Suppl 15):43–7.

    CAS  PubMed  Google Scholar 

  52. Wang ZY, Kusam S, Munugalavadla V, et al. Regulation of Th2 cytokine expression in NKT cells: unconventional use of Stat6, GATA-3, and NFAT2. J Immunol. 2006;176:880–8.

    Article  CAS  PubMed  Google Scholar 

  53. Sehra S, Patel D, Kusam S, et al. A role for caspases in controlling IL-4 expression in T cells. J Immunol. 2005;174:3440–6.

    Article  CAS  PubMed  Google Scholar 

  54. Duan L, Chen J, Zhang H, et al. Interleukin-33 ameliorates experimental colitis through promoting Th2/Foxp3(+) regulatory T-cell responses in mice. Mol Med. 2012;18:753–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Pushparaj PN, Li D, Komai-Koma M, et al. Interleukin-33 exacerbates acute colitis via interleukin-4 in mice. Immunology. 2013;140(1):70–7.

  56. Grobeta P, Doser K, Falk W, et al. IL-33 attenuates development and perpetuation of chronic intestinal inflammation. Inflamm Bowel Dis. 2012;18:1900–9.

    Article  PubMed  Google Scholar 

  57. Sedhom MA, Pichery M, Murdoch JR, et al. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut. 2012;62(12):1714–23.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anders Hansen, Camilla Frost Sørensen, Hanne Fuglsang, Jeanette Juul, Lotte Friis, and Vibeke Voxen Hansen for excellent technical assistance. This study was supported by grants from Fonden til Lægevidenskabens Fremme (the A. P. Møller Foundation), Novo Nordisk A/S, the Family Erichsen Memorial Foundation, the Lundbeck Foundation, the Axel Muusfeldts Foundation, and the Foundation of Aase and Ejnar Danielsen. JS holds a grant from the Danish Council for Independent Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Benedict Seidelin.

Additional information

J. B. Seidelin and M. Coskun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidelin, J.B., Coskun, M., Kvist, P.H. et al. IL-33 promotes GATA-3 polarization of gut-derived T cells in experimental and ulcerative colitis. J Gastroenterol 50, 180–190 (2015). https://doi.org/10.1007/s00535-014-0982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-0982-7

Keywords

Navigation