Skip to main content

Advertisement

Log in

A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The genetics of pancreatic ductal adenocarcinoma (PDAC) is complex with patients reported to harbor germline pathogenic variants (PVs) in many different genes. PDAC patients with familial pancreatic cancer (FPC) are more likely to carry germline PVs but there is no consensus main gene involved in FPC. We performed a systematic review of publications from PubMed and Scopus reporting PVs in patients with FPC, sporadic pancreatic cancer (SPC) and unselected cohorts of PDAC patients undergoing genetic testing and calculated a cumulative prevalence of PVs for each gene evaluated across these three groups of patients. When available, variants in the selected publications were reclassified according to the American College of Medical Genetics and Genomics classification system and used for prevalence calculations if classified as pathogenic or likely pathogenic. We observed an increased prevalence of PVs in FPC compared to SPC or unselected PDAC patients for most of the 41 genes reported. The genes with the highest prevalence of carriers of PVs in FPC were ATM, BRCA2, and CDKN2A. BRCA2 and ATM showed the highest prevalence of PVs in both SPC and unselected PDAC cohorts. Several genes with the highest prevalence of PVs are involved in breast and ovarian cancer suggesting strong overlap with underlying genetics in these disorders but no single gene was predominant. More research is needed to further understand the risk of PDAC associated with these many diverse genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  3. Solomon S, Das S, Brand R, Whitcomb DC. Inherited pancreatic cancer syndromes. Cancer J. 2012;18:485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69:7–17.

    Article  CAS  PubMed  Google Scholar 

  5. DaVee T, Coronel E, Papafragkakis C, et al. Pancreatic cancer screening in high-risk individuals with germline genetic mutations. Gastrointest Endosc. 2018;87:1443–50.

    Article  PubMed  Google Scholar 

  6. Petersen GM. Familial pancreatic adenocarcinoma. Hematol Oncol Clin North Am. 2015;29:641–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64:2634–8.

    Article  CAS  PubMed  Google Scholar 

  8. Petersen GM. Familial pancreatic cancer. Semin Oncol. 2016;43:548–53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bar-Sade RB, Kruglikova A, Modan B, et al. The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazim. Hum Mol Genet. 1998;7:801–5.

    Article  CAS  PubMed  Google Scholar 

  10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alimirzaie S, Mohamadkhani A, Masoudi S, et al. Mutations in known and novel cancer susceptibility genes in young patients with pancreatic cancer. Arch Iran Med. 2018;21:228–33.

    PubMed  Google Scholar 

  12. Axilbund JE, Argani P, Kamiyama M, et al. Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer Biol Ther. 2009;8:131–5.

    Article  CAS  PubMed  Google Scholar 

  13. Blair AB, Groot VP, Gemenetzis G, et al. BRCA1/BRCA2 germline mutation carriers and sporadic pancreatic ductal adenocarcinoma. J Am Coll Surg. 2018;226:630–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Borecka M, Zemankova P, Vocka M, et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209:199–204.

    Article  CAS  PubMed  Google Scholar 

  15. Brand R, Borazanci E, Speare V, et al. Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma. Cancer. 2018;124:3520–7.

    Article  CAS  PubMed  Google Scholar 

  16. Chaffee KG, Oberg AL, McWilliams RR, et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med. 2018;20:119–27.

    Article  CAS  PubMed  Google Scholar 

  17. Cremin C, Lee MK, Hong Q, et al. Burden of hereditary cancer susceptibility in unselected patients with pancreatic ductal adenocarcinoma referred for germline screening. Cancer Med. 2020;9:4004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Earl J, Galindo-Pumariño C, Encinas J, et al. A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine. 2020;53:102675.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrone CR, Levine DA, Tang LH, et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol. 2009;27:433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghiorzo P, Fornarini G, Genoa Pancreatic Cancer Study Group. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J Med Genet. 2012;49:164–70.

    Article  CAS  PubMed  Google Scholar 

  21. Golan T, Kindler HL, Park JO, et al. Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial. J Clin Oncol. 2020;38:1442–54.

    Article  CAS  PubMed  Google Scholar 

  22. Grant RC, Selander I, Connor AA, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148:556–64.

    Article  CAS  PubMed  Google Scholar 

  23. Grant RC, Denroche RE, Borgida A, et al. Exome-wide association study of pancreatic cancer risk. Gastroenterology. 2018;154:719–22.

    Article  PubMed  Google Scholar 

  24. Holter S, Borgida A, Dodd A, et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol. 2015;33:3124–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hu C, Hart SN, Bamlet WR, et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev. 2016;25:207–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hu C, LaDuca H, Shimelis H, et al. Multigene hereditary cancer panels reveal high-risk pancreatic cancer susceptibility genes. JCO Precis Oncol. 2018;2:1–28.

    Google Scholar 

  27. Hu C, Hart SN, Polley EC, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319:2401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones S, Hruban RH, Kamiyama M, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krepline AN, Geurts JL, Akinola I, et al. Detection of germline variants using expanded multigene panels in patients with localized pancreatic cancer. HPB. 2020;22:1745–52.

    Article  PubMed  Google Scholar 

  30. Lee K, Yoo C, Kim KP, et al. Germline BRCA mutations in Asian patients with pancreatic adenocarcinoma: a prospective study evaluating risk category for genetic testing. Invest New Drugs. 2018;36:163–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lowery MA, Wong W, Jordan EJ, et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst. 2018;110:1067–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lucas AL, Shakya R, Lipsyc MD, et al. High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res. 2013;19:3396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lucas AL, Frado LE, Hwang C, et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer. 2014;120:1960–7.

    Article  CAS  PubMed  Google Scholar 

  34. McWilliams RR, Wieben ED, Rabe KG, et al. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet. 2011;19:472–8.

    Article  CAS  PubMed  Google Scholar 

  35. McWilliams RR, Wieben ED, Chaffee KG, et al. CDKN2A germline rare coding variants and risk of pancreatic cancer in minority populations. Cancer Epidemiol Biomarkers Prev. 2018;27:1364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ohmoto A, Yachida S, Kubo E, et al. Clinicopathologic features and germline sequence variants in young patients (≤40 years old) with pancreatic ductal adenocarcinoma. Pancreas. 2016;45:1056–61.

    Article  CAS  PubMed  Google Scholar 

  37. Roberts NJ, Jiao Y, Yu J, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2:41–6.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts NJ, Norris AL, Petersen GM, et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6:166–75.

    Article  CAS  PubMed  Google Scholar 

  39. Salo-Mullen EE, O’Reilly EM, Kelsen DP, et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121:4382–8.

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz M, Korenbaum C, Benfoda M, et al. Familial pancreatic adenocarcinoma: a retrospective analysis of germline genetic testing in a French multicentre cohort. Clin Genet. 2019;96:579–84.

    Article  CAS  PubMed  Google Scholar 

  41. Shindo K, Yu J, Suenaga M, et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35:3382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slater EP, Langer P, Niemczyk E, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78:490–4.

    Article  CAS  PubMed  Google Scholar 

  43. Slavin TP, Neuhausen SL, Clinical Cancer Genomics Community Research Network (CCGCRN), et al. The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes. Fam Cancer. 2018;17:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takai E, Yachida S, Shimizu K, et al. Germline mutations in Japanese familial pancreatic cancer patients. Oncotarget. 2016;7:74227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yurgelun MB, Chittenden AB, Morales-Oyarvide V, et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med. 2019;21:213–23.

    Article  CAS  PubMed  Google Scholar 

  46. Cybulski C, Górski B, Huzarski T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004;75:1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roa BB, Boyd AA, Volcik K, et al. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 1996;14:185–7.

    Article  CAS  PubMed  Google Scholar 

  48. Struewing JP, Abeliovich D, Peretz T, et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet. 1995;11:198–200.

    Article  CAS  PubMed  Google Scholar 

  49. Petrucelli N, Daly MB, Pal T (1998) BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. In: Adam MP, Ardinger HH, Pagon RA, et al. (eds) GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021 [Updated 15 Dec 2016]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1247/

  50. Hata C, Nakaoka H, Xiang Y, et al. Germline mutations of multiple breast cancer-related genes are differentially associated with triple-negative breast cancers and prognostic factors. J Hum Genet. 2020;65:577–87.

    Article  CAS  PubMed  Google Scholar 

  51. Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wattenberg M, Asch D, Yu S, et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br J Cancer. 2020;122:333–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kondo T, Kanai M, Kou T, et al. Association between homologous recombination repair gene mutations and response to oxaliplatin in pancreatic cancer. Oncotarget. 2018;9:19817–25.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rossi M, Pellegrini C, Cardelli L, et al. Familial melanoma: diagnostic and management implications. Dermatol Pract Concept. 2019;9:10–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Idos G, Valle L (2004) Lynch syndrome. In: Adam MP, Ardinger HH, Pagon RA et al. (eds). GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021 [Updated 4 Feb 2021]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1211/

Download references

Funding

This work was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [AMG]; literature search: [EAS], data analysis: [AMG, EAS]; drafting and critical revision of the work: [AMG, EAS].

Corresponding author

Correspondence to Alisa M. Goldstein.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1687 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astiazaran-Symonds, E., Goldstein, A.M. A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 56, 713–721 (2021). https://doi.org/10.1007/s00535-021-01806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01806-y

Keywords

Navigation