Skip to main content
Log in

An effective bio-inspired synthesis of platinum nanoparticles using Caulerpa sertularioides and investigating their antibacterial and antioxidant activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we report the synthesis of platinum nanoparticles (Cs-PtNPs) using an aqueous extract of Caulerpa sertularioides as a reducing agent. Cs-PtNPs were characterized by UV–Vis spectroscopy, fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), high-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) analysis. Cs-PtNPs are spherical with a particle size of 6–22 nm. Cs-PtNPs have been shown to have highly effective antioxidant activities with 74% for DPPH, 63% for reducing power, and 59% for total antioxidant at 1 mg/ml, and results were compared with standard L-ascorbic acid. Furthermore, the Cs-PtNPs demonstrated excellent antibacterial activity against the Gram-negative bacteria, Vibrio parahaemolyticus with the highest zone of inhibition (18 mm) at 50 µg/ml. Moreover, Artemia nauplii showed less toxicity when treated with Cs-PtNPs at 150 µg/ml, indicating that the Cs-PtNPs are less toxic and environment friendly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data used to support the findings of this study are included in the article. Raw data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Karikalan N, Velmurugan M, Chen SM, Karuppiah C (2016) Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b07260

    Article  Google Scholar 

  2. Yıldız Y, Kuzu S, Sen B et al (2017) Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.03.230

    Article  Google Scholar 

  3. Mallikarjuna K, Bathula C, Dinneswara Reddy G et al (2019) Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.12.137

    Article  Google Scholar 

  4. Jameel MS, Aziz AA, Dheyab MA (2020) Green synthesis: proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Process Synth 9:386–398

    Article  Google Scholar 

  5. Dong P, Zhang T, Xiang H et al (2021) Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J Mater Chem B. https://doi.org/10.1039/d0tb02337j

    Article  Google Scholar 

  6. Fan Y, Marioli M, Zhang K (2021) Journal of pharmaceutical and biomedical analysis analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 192:113642

    Article  CAS  Google Scholar 

  7. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    Article  CAS  Google Scholar 

  8. Al-Radadi NS (2019) Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.05.008

    Article  Google Scholar 

  9. Şahin B, Aygün A, Gündüz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2017.12.042

    Article  Google Scholar 

  10. Naseer A, Ali A, Ali S et al (2020) Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: environmental, biological and catalytic applications. J Mater Res Technol 9:9093–9107

    Article  CAS  Google Scholar 

  11. Zhang X, Li C, Qu J et al (2019) Cotton stalk activated carbon-supported Co–Ce–B nanoparticles as efficient catalysts for hydrogen generation through hydrolysis of sodium borohydride. Carbon Resour Convers. https://doi.org/10.1016/j.crcon.2019.11.001

    Article  Google Scholar 

  12. Zhang C, Cui Y, Song L et al (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta. https://doi.org/10.1016/j.talanta.2015.12.015

    Article  Google Scholar 

  13. Sui S, Wei Z, Su K et al (2018) Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.09.009

    Article  Google Scholar 

  14. Li C, Li M, Wang X et al (2019) Novel carbon nanoparticles derived from biodiesel soot as lubricant additives. Nanomaterials. https://doi.org/10.3390/nano9081115

    Article  Google Scholar 

  15. Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 38:160–175

    CAS  Google Scholar 

  16. Karthik R, Sasikumar R, Chen SM et al (2016) Green synthesis of platinum nanoparticles using Quercus glauca extract and its electrochemical oxidation of hydrazine in water samples. Int J Electrochem Sci 11:8245–8255. https://doi.org/10.20964/2016.10.62

    Article  CAS  Google Scholar 

  17. Aygun A, Gülbagca F, Ozer LY et al (2020) Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2019.112961

    Article  Google Scholar 

  18. Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res. https://doi.org/10.1016/j.imr.2017.01.006

    Article  Google Scholar 

  19. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR et al (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1110.10085

    Article  Google Scholar 

  20. Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-013-1069-1

    Article  Google Scholar 

  21. Shiny PJ, Mukherjee A, Chandrasekaran N (2016) DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesised silver and platinum nanoparticles. RSC Adv. https://doi.org/10.1039/c5ra27185a

    Article  Google Scholar 

  22. Baskaran B, Muthukumarasamy A, Chidambaram S et al (2017) Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells. IET Nanobiotechnology 11:241–246. https://doi.org/10.1049/iet-nbt.2016.0040

    Article  Google Scholar 

  23. Martins M, Mourato C, Sanches S et al (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. https://doi.org/10.1016/j.watres.2016.10.071

    Article  Google Scholar 

  24. Tahir K, Nazir S, Ahmad A et al (2017) Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2016.12.016

    Article  Google Scholar 

  25. Yang L, Ding Y, Chen L et al (2017) Hierarchical reduced graphene oxide supported dealloyed platinum–copper nanoparticles for highly efficient methanol electrooxidation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.01.133

    Article  Google Scholar 

  26. Sathiyaraj G, Vinosha M, Sangeetha D et al (2021) Bio-directed synthesis of Pt-nanoparticles from aqueous extract of red algae Halymenia dilatata and their biomedical applications. Colloids Surf A Physicochem Eng Asp 618:126434. https://doi.org/10.1016/j.colsurfa.2021.126434

    Article  CAS  Google Scholar 

  27. Ravichandran A, Subramanian P, Manoharan V et al (2018) Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J Photochem Photobiol B Biol 185:117–125. https://doi.org/10.1016/j.jphotobiol.2018.05.031

    Article  CAS  Google Scholar 

  28. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  29. S. G, R. N, A. D, et al (2015) Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10: 7477–7490

  30. Manikandakrishnan M, Palanisamy S, Vinosha M et al (2019) Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications. J Drug Deliv Sci Technol 54:101345. https://doi.org/10.1016/J.JDDST.2019.101345

    Article  CAS  Google Scholar 

  31. Heffernan N, Smyth TJ, FitzGerald RJ et al (2014) Antioxidant activity and phenolic content of pressurised liquid and solid-liquid extracts from four Irish origin macroalgae. Int J Food Sci Technol 49:1765–1772. https://doi.org/10.1111/ijfs.12512

    Article  CAS  Google Scholar 

  32. Garcia-Bedoya D, Ramírez-Rodríguez LP, Quiroz-Castillo JM et al (2021) Caulerpa sertularioides extract as a complexing agent in the synthesis of ZnO and Zn(OH)2 nanoparticles and its effect in the azo dye’s photocatalysis in water. BioResources 16:1548–1560. https://doi.org/10.15376/biores.16.1.1548-1560

    Article  CAS  Google Scholar 

  33. Krengel U, Törnroth-Horsefield S (2015) Coping with oxidative stress. Science 347:125–126

    Article  CAS  Google Scholar 

  34. Ślesak I, Libik M, Karpinska B et al (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    Article  Google Scholar 

  35. Noguchi N, Niki E (2000) Phenolic antioxidants: a rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic Biol Med 28:1536–1546

    Google Scholar 

  36. Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. https://doi.org/10.1016/S0304-4165(99)00152-X

    Article  Google Scholar 

  37. Hraš AR, Hadolin M, Knez Ž, Bauman D (2000) Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem. https://doi.org/10.1016/S0308-8146(00)00161-8

    Article  Google Scholar 

  38. Hlavatá L, Vyskočil V, Beníková K et al (2014) DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Cent Eur J Chem. https://doi.org/10.2478/s11532-014-0516-4

    Article  Google Scholar 

  39. Onofrejová L, Vašíčková J, Klejdus B et al (2010) Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2009.03.027

    Article  Google Scholar 

  40. Kuda T, Tsunekawa M, Goto H, Araki Y (2005) Antioxidant properties of four edible algae harvested in the Noto Peninsula. Japan J Food Compos Anal. https://doi.org/10.1016/j.jfca.2004.06.015

    Article  Google Scholar 

  41. Souza BWS, Cerqueira MA, Martins JT et al (2011) Antioxidant potential of two red seaweeds from the Brazilian coasts. J Agric Food Chem. https://doi.org/10.1021/jf200999n

    Article  Google Scholar 

  42. Zheng B, Kong T, Jing X et al (2013) Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2013.01.021

    Article  Google Scholar 

  43. Lee JH, Kim H, Lee YS, Jung DY (2014) Enhanced catalytic activity of platinum nanoparticles by exfoliated metal hydroxide nanosheets. ChemCatChem. https://doi.org/10.1002/cctc.201300724

    Article  Google Scholar 

  44. Ramkumar VS, Pugazhendhi A, Prakash S et al (2017) Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2017.05.076

    Article  Google Scholar 

  45. Selvi AM, Palanisamy S, Jeyanthi S et al (2020) Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem 98:21–33. https://doi.org/10.1016/J.PROCBIO.2020.07.008

    Article  CAS  Google Scholar 

  46. Ishimaru K, Akagawa-Matsushita M, Muroga K (1995) Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Bacteriol 45:1–134. https://doi.org/10.1099/00207713-45-1-134

    Article  Google Scholar 

  47. Lavilla-Pitogo CR, Leaño EM, Paner MG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337–349

    Article  Google Scholar 

  48. Karunasagar I, Shivu MM, Girisha SK et al (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture. https://doi.org/10.1016/j.aquaculture.2007.04.049

    Article  Google Scholar 

  49. Joshi J, Srisala J, Truong VH et al (2014) Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture. https://doi.org/10.1016/j.aquaculture.2014.03.030

    Article  Google Scholar 

  50. Pui CF, Bilung LM, Bainun N et al (2014) Risk of acquiring Vibrio parahaemolyticus in water and shrimp from an aquaculture farm. Kuroshio Sci 8:59–62

    Google Scholar 

  51. Tran L, Nunan L, Redman RM et al (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ. https://doi.org/10.3354/dao02621

    Article  Google Scholar 

  52. Allen HK, Donato J, Wang HH et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  Google Scholar 

  53. Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture. https://doi.org/10.1016/j.aquaculture.2009.03.007

    Article  Google Scholar 

  54. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12:701–710

    Article  CAS  Google Scholar 

  55. Malaikozhundan B, Krishnamoorthi R, Vinodhini J et al (2022) Multifunctional iron oxide nanoparticles using Carica papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes. Inorg Chem Commun 144:109843. https://doi.org/10.1016/J.INOCHE.2022.109843

    Article  CAS  Google Scholar 

  56. Anjali R, Palanisamy S, Vinosha M et al (2022) Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: characterization, antioxidant and antimicrobial activity. Process Biochem 121:601–618. https://doi.org/10.1016/J.PROCBIO.2022.07.027

    Article  CAS  Google Scholar 

  57. Shanmugapriya K, Palanisamy S, Boomi P et al (2021) An eco-friendly Gnaphalium polycaulon mediated silver nanoparticles: synthesis, characterization, antimicrobial, wound healing and drug release studies. J Drug Deliv Sci Technol 61:102202. https://doi.org/10.1016/J.JDDST.2020.102202

    Article  CAS  Google Scholar 

  58. Subramanian P, Ravichandran A, Manoharan V et al (2019) Synthesis of Oldenlandia umbellata stabilized silver nanoparticles and their antioxidant effect, antibacterial activity, and bio-compatibility using human lung fibroblast cell line WI-38. Process Biochem 86:196–204. https://doi.org/10.1016/J.PROCBIO.2019.08.002

    Article  CAS  Google Scholar 

  59. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. https://doi.org/10.1016/J.JCONREL.2011.07.002

    Article  CAS  Google Scholar 

  60. Kreuter J (1991) Liposomes and nanoparticles as vehicles for antibiotics. Infect 194(19):S224–S228. https://doi.org/10.1007/BF01644038

    Article  Google Scholar 

  61. Jagannathan R, Poddar P, Prabhune A (2007) Cephalexin-mediated synthesis of quasi-spherical and anisotropic gold nanoparticles and their in situ capping by the antibiotic. J Phys Chem C 111:6933–6938. https://doi.org/10.1021/JP067645R/SUPPL_FILE/JP067645RSI20070221_122629.PDF

    Article  CAS  Google Scholar 

  62. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204. https://doi.org/10.1271/bbb.62.1201

    Article  CAS  Google Scholar 

  63. Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32. https://doi.org/10.1021/jf00049a007

    Article  CAS  Google Scholar 

  64. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  Google Scholar 

  65. Vinosha M, Palanisamy S, Muthukrishnan R et al (2019) Biogenic synthesis of gold nanoparticles from Halymenia dilatata for pharmaceutical applications: antioxidant, anti-cancer and antibacterial activities. Process Biochem 85:219–229. https://doi.org/10.1016/j.procbio.2019.07.013

    Article  CAS  Google Scholar 

  66. Kim SH, Lee HS, Ryu DS et al (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:1905

    Google Scholar 

  67. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  Google Scholar 

  68. Wayne P (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI document M100-S23

  69. Kumar S, Raman RP, Pandey PK et al (2013) Effect of orally administered azadirachtin on non-specific immune parameters of goldfish Carassius auratus (Linn. 1758) and resistance against Aeromonas hydrophila. Fish Shellfish Immunol 34:564–573. https://doi.org/10.1016/j.fsi.2012.11.038

    Article  CAS  Google Scholar 

  70. Siddiqi KS, Husen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482

    Article  Google Scholar 

  71. Jameel MS, Aziz AA, Dheyab MA (2020) Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods. Nano-Struct Nano-Objects. https://doi.org/10.1016/j.nanoso.2020.100484

    Article  Google Scholar 

  72. Vadlapudi V, Amanchy R (2017) Phytofabrication of silver nanoparticles using Myriostachya wightiana as a novel bioresource, and evaluation of their biological activities. Brazilian Arch Biol Technol 60:1–13. https://doi.org/10.1590/1678-4324-2017160329

    Article  CAS  Google Scholar 

  73. Nishanthi R, Malathi S, JP S, Palani P (2019) Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2018.11.050

    Article  Google Scholar 

  74. Raj S, Chand Mali S, Trivedi R (2018) Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem Biophys Res Commun 503:2814–2819. https://doi.org/10.1016/j.bbrc.2018.08.045

    Article  CAS  Google Scholar 

  75. Gupta K, Chundawat TS (2019) Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4219

    Article  Google Scholar 

  76. Kim J, Takahashi M, Shimizu T et al (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2008.02.011

    Article  Google Scholar 

  77. Rajeshkumar S, Malarkodi C (2014) In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl. https://doi.org/10.1155/2014/581890

    Article  Google Scholar 

  78. Jeyapaul U, Kala MJ, Bosco AJ et al (2018) An eco-friendly approach for synthesis of platinum nanoparticles using leaf extracts of Jatropa gossypifolia and jatropa glandulifera and their antibacterial activity. Orient J Chem 34:783–790. https://doi.org/10.13005/ojc/340223

    Article  CAS  Google Scholar 

  79. Subramaniyan SB, Ramani A, Ganapathy V, Anbazhagan V (2018) Preparation of self-assembled platinum nanoclusters to combat Salmonella typhi infection and inhibit biofilm formation. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2018.07.023

    Article  Google Scholar 

  80. Zou F, Zhou J, Zhang J et al (2018) Functionalization of silk with in-situ synthesized platinum nanoparticles. Materials (Basel). https://doi.org/10.3390/ma11101929

    Article  Google Scholar 

  81. Renuka R, Devi KR, Sivakami M et al (2020) Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101567

    Article  Google Scholar 

  82. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K et al (2020) Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100553

    Article  Google Scholar 

  83. Perveen S, Safdar N, ChaudhryeYasmin GA (2018) Antibacterial evaluation of silver nanoparticles synthesized from lychee peel: individual versus antibiotic conjugated effects. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-018-2500-1

    Article  Google Scholar 

  84. Bhushan M, Muthukamalam S, Sudharani S, Viswanath AK (2015) Synthesis of α-Fe2-xAgxO3 nanocrystals and study of their optical, magnetic and antibacterial properties. RSC Adv 5:32006–32014. https://doi.org/10.1039/c4ra17259k

    Article  CAS  Google Scholar 

  85. Veena S, Devasena T, Sathak SSM et al (2019) Green synthesis of gold nanoparticles from Vitex negundo leaf extract: characterization and in vitro evaluation of antioxidant-antibacterial activity. J Clust Sci. https://doi.org/10.1007/s10876-019-01601-z

    Article  Google Scholar 

  86. Mobeen Amanulla A, Sundaram R (2019) Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. In: Materials Today: Proceedings

  87. Mobeen A, Maria Magdalane C, Jasmine Shahina SK et al (2019) Investigation on antibacterial and photocatalytic degradation of Rhodamine-B dye under visible light irradiation by titanium molybdate nanoparticles prepared via microwave method. Surf Interfaces. https://doi.org/10.1016/j.surfin.2019.100381

    Article  Google Scholar 

  88. Rajasree SRR, Kumar VG, Abraham LS (2011) Studies on the toxicological effects of engineered nanoparticles in environment—a review. Int J Appl Bio Eng 5:35–45. https://doi.org/10.18000/ijabeg.10083

    Article  Google Scholar 

  89. Rodd AL, Creighton MA, Vaslet CA et al (2014) Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environ Sci Technol. https://doi.org/10.1021/es500892m

    Article  Google Scholar 

  90. Rajabi S, Ramazani A, Hamidi M, Naji T (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J Pharm Sci. https://doi.org/10.1186/S40199-015-0105-X

    Article  Google Scholar 

  91. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res. https://doi.org/10.1065/espr2006.06.311

    Article  Google Scholar 

  92. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. https://doi.org/10.1016/j.chemosphere.2009.11.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors and R. Anjali gratefully acknowledge the DST-INSPIRE Scheme (DST/INSPIRE Fellowship/2015/ IF150023 dated 20.02.2015) for providing financial support. They also thank the RUSA scheme Phase 2.0 Grant [F-24-51/2014-U, Policy (TNMulti-Gen), Dept of Edn, Govt. of India. Dt. 09.10.2018]. Prof. SangGuan You thanks the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03023584) for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SangGuan You or Narayanasamy Marimuthu Prabhu.

Ethics declarations

Conflicts of interest

The authors decline that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, S., Anjali, R., Jeneeta, S. et al. An effective bio-inspired synthesis of platinum nanoparticles using Caulerpa sertularioides and investigating their antibacterial and antioxidant activities. Bioprocess Biosyst Eng 46, 105–118 (2023). https://doi.org/10.1007/s00449-022-02816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02816-7

Keywords

Navigation