Skip to main content
Log in

Liposomes and nanoparticles as vehicles for antibiotics

Liposomen und Nanopartikel als Träger für Antibiotika

  • Published:
Infection Aims and scope Submit manuscript

Summary

Colloidal drug carriers such as liposomes and nanoparticles are easily taken up by phagocytic cells and accumulate in the organs of the reticuloendothelial system. Therefore, they hold promise as carriers for the treatment of intracellular infections with antibiotics that would normally not find easy access to intracellular sites. Consequently, inin vitro andin vivo experiments the therapeutic efficacy of substances such as amphotericin B, dihydrostreptomycin, amikacin, ampicillin, stibogluconate against a number of microorganisms includingLeishmania donovani, Candida albicans, Staphylococcus aureus, Mycobacterium avium, Listeria monocytogenes, andSalmonella typhimurium was increased significantly by binding to liposomes and nanoparticles.

Zusammenfassung

Kolloidale Arzneistoffträger wie Liposomen und Nanopartikeln werden leicht von phagozytierenden Zellen aufgenommen und reichern sich somit in den Organen des retikuloendothelialen Systems an. Aus diesem Grunde sind sie vielversprechende Träger für Antibiotika zur Therapie intrazellulärer Infektionen, die sonst kaum oder nicht in diese Zellen gelangen können. Entsprechend wurdein vitro wie auchin vivo durch Bindung von Substanzen wie Amphotericin B, Dihydrostreptomycin, Amikacin, Ampicillin und Wismutgluconat an Liposomen und Nanopartikeln eine wesentliche Verbesserung der therapeutischen Effizienz gegen eine Reihe von Mikroorganismen wieLeishmania donovani, Candida albicans, Staphylococcus aureus, Mycobacterium avium, Listeria monocytogenes, undSalmonella typhimurium erreicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreuter, J.: Nanoparticles — preparation and applications. In:Donbrow, M. (ed.): Microencapsulation in medicine and pharmacy. CRC Press, Boca Raton (in press).

  2. Hässander, U. K., Storm, G., Peeters, P. A. M., Crommelin, D. J. A.: Liposomes. In:Chasin, M., Langer, R. (eds.): Biodegradable polymers as drug delivery systems. M. Decker, New York (in press).

  3. Kreuter, J. Evaluation of nanoparticles as drug-delivery systems. I. Preparation methods. Pharm. Acta Helv. 58 (1983) 196–209.

    Google Scholar 

  4. Lenaerts, V., Nagelkerke, J. F., van Berkel, T. J. C., Couvreur, P., Grislain, L., Roland, M., Speiser, P. In vivo uptake of polyisobutylcyanoacrylate nanoparticles by rat liver Kupffer, endothelial, and parenchymal cells. J. Pharm. Sci. 73 (1984) 980–983.

    Google Scholar 

  5. Kreuter, J. Evaluation of nanoparticles as drug-delivery systems. II. Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter < 1 µm), liposomes, and emulsions. Pharm. Acta Helv. 58 (1983) 217–226.

    Google Scholar 

  6. Couvreur, P., Tulkens, P., Roland, M., Trouet, A., Speiser, P. Nanocapsules: A new type of lysosomotropic carrier. FEBS Lett. 84 (1977) 323–326.

    Google Scholar 

  7. Tröster, S. D., Müller, U., Kreuter, J. Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int. J. Pharm. 61 (1990) 85–100.

    Google Scholar 

  8. Trouet, A., Tulkens, P. Intracellular penetration and distribution of antibiotics: The basis for an improved chemotherapy of intracellular infections. In:Ninet, L., Bost, P. E., Bouanchand, D. H., Florent, J. (eds.): The future of antibiotherapy and antibiotic research. Academic Press, London 1981, pp. 337–349.

    Google Scholar 

  9. Brajtburg, J., Powderly, W. G., Kobayashi, G. S., Medoff, G. Amphotericin B: Delivery systems. Antimicrob. Agents Chemother. 34 (1990) 381–384.

    Google Scholar 

  10. Johnson, J. D., Hand, W. L., Francis, J. B., King-Thompson, N., Corwin, R. W. Antibiotic uptake by alveolar macrophages. J. Lab. Clin. Med. 95 (1980) 429–439.

    Google Scholar 

  11. Barza, M. Principles of tissue penetration of antibiotics. J. Antimicrob. Chemother. 8 (Suppl. C) (1981) 7–28.

    Google Scholar 

  12. Eltahawy, A. T. The penetration of mammalian cells by antibiotics. J. Antimicrob. Chemother. 11 (1983) 293–298.

    Google Scholar 

  13. Lam, C., Mathison, G. E. Intraphagocytic protection of staphylococci from extracellular penicillin. J. Med. Microbiol. 15 (1982) 373–385.

    Google Scholar 

  14. New, R. R. C., Chance, M. L., Health, S. Antileishmanial activity of amphotericin B and other antifungal agents entrapped in liposomes. J. Antimicrob. Chemother. 8 (1981) 371–381.

    Google Scholar 

  15. Taylor, R. L., Williams, D. M., Craven, P. C., Graybill, J. R., Drutz, D. J., Magee, W. E. Amphotericin B in liposomes: A novel therapy for histoplasmosis. Am. Rev. Respir. Dis. 145 (1982) 748–752.

    Google Scholar 

  16. Graybill, J. R., Craven, P. C., Taylor, R. L., Williams, D. M., Magee, W. E. Treatment of murine cryptococcosis with liposomal-associated amphotericin B. J. Infect. Dis. 45 (1982) 748–752.

    Google Scholar 

  17. Lopez-Berestein, G., Mehta, R., Hofer, R. L., Mills, K., Kasi, L., Mehta, K., Fainstein, V., Luna, M., Hersh, E. M., Juliano, R. Treatment and prophylaxis of disseminated infection due toCandida albicans in mice with liposomal-encapsulated amphotericin B. J. Infect. Dis. 147 (1983) 939–944.

    Google Scholar 

  18. Lopez-Berestein, G., Fainstein, V., Hopfer, R., Mehta, K., Sullivan, M. P., Keating, M., Rosenblum, M. G., Mehta, R., Luna, M., Hersh, E. M., Reuben, J., Juliano, R. M., Bodey, G. P. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: A preliminary study. J. Infect. Dis. 151 (1985) 704–710.

    Google Scholar 

  19. Lopez-Berestein, G., Bodey, G. P., Frankel, L. S., Mehta, K. Treatment of hepatosplenic fungal infections with liposomal amphotericin B. J. Clin. Oncol. 5 (1987) 310–317.

    Google Scholar 

  20. Sculier, J. P., Coune, A., Meunier, F., Brassinne, C., Laduron, C., Hollaert, C., Collette, N., Heyman, C., Klastersky, J. Pilot study of amphotericin B entrapped into sonicated liposomes in cancer patients with fungal infections. Eur. J. Cancer Clin. Oncol. 24 (1988) 527–538.

    Google Scholar 

  21. Bonventre, P. F., Gregoriadis, G. Killing ofStaphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimicrob. Agents Chemother. 13 (1978) 1049–1051.

    Google Scholar 

  22. Barsoum, I. S., Reich, M. The effect of liposome-entrapped penicillin G onStaphylococcus aureus infection in mice. Pharmacology 10 (1982) 358.

    Google Scholar 

  23. Bermudez, L. E. M., Wu, M., Young, L. S. Intracellular killing ofMycobacterium avium complex by rifapentine and liposome-encapsulated amikacin. J. Infect. Dis. 156 (1987) 510–513.

    Google Scholar 

  24. Cynamon, M. H., Swenson, S. W., Palmer, G. S., Ginsberg, R. S. Liposome encapsulated-amikacin therapy ofMycobacterium avium complex infection in beige mice. Antimicrob. Agents Chemother. 33 (1989) 1179–1183.

    Google Scholar 

  25. Bakker-Woudenberg, I. A. J. M., Lokerse, A. F., Vink-van den Berg, J. C., Roerdink, F. H. Liposome-encapsulated ampicillin againstListeria monocytogenes in vivo andin vitro. Infection 16 (Suppl. 2) (1988) 165–170.

    Google Scholar 

  26. Kreuter, J., Speiser, P. P. New adjuvants on a polymethylmethacrylate base. Infect. Immunity 13 (1976) 204–210.

    Google Scholar 

  27. Kreuter, J., Berg, U., Liehl, E., Soliva, M., Speiser, P. P. Influence of the particle size on the adjuvant effect of particulate polymeric adjuvants. Vaccine 4 (1986) 125–129.

    Google Scholar 

  28. Kreuter, J., Liehl, E. Protection induced by inactivated influenza vaccines with polymethylmethacrylate adjuvants. Med. Microbiol. Immunol. 165 (1978) 111–117.

    Google Scholar 

  29. Kreuter, J., Mauler, R., Gruschkau, H., Speiser, P. P. The use of new polymethylmethacrylate adjuvants for split influenza vaccines. Exp. Cell Biol. 44 (1978) 12–19.

    Google Scholar 

  30. Kreuter, J., Liehl, E. Long-term studies of micro-encapsulated and adsorbed influenza vaccine nanoparticles. J. Pharm. Sci. 70 (1981) 367–371.

    Google Scholar 

  31. Kreuter, J., Haenzel, I. Mode of action of immunological adjuvants: Some physicochemical factors influencing the effectivity of polyacrylic adjuvants. Infect. Immunity 19 (1978) 667–675.

    Google Scholar 

  32. Kreuter, J., Liehl, E., Berg, U., Soliva, M., Speiser, P. P. Influence of hydrophobicity on the adjuvant effect of particulate polymeric adjuvants. Vaccine 6 (1988) 253–256.

    Google Scholar 

  33. Baillie, A. J., Coombs, G. H., Dolan, T. F., Hunter, C. A., Laakso, T., Sjöholm, I., Stjärnkvist, P. Biodegradable microspheres: polyacryl starch microparticles as a delivery system for the antileishmanial drug, sodium stibogluconate. J. Pharm. Pharmacol. 39 (1978) 832–835.

    Google Scholar 

  34. Stjärnkvist, P., Artursson, P., Brunmark, A., Laakso, T., Sjöholm, I. Biodegradable microspheres. VIII. Killing ofLeishmania donovani in cultured macrophages by microparticle-bound primaquine. Int. J. Pharm. 40 (1987) 215–222.

    Google Scholar 

  35. Fouarge, M., Dewulf, M., Couvreur, P., Roland, M., Vranckx, H. Development of dehydroemetine nanoparticles for the treatment of visceral leishmaniasis. J. Microencapsul. 6 [1989] 29–34.

    Google Scholar 

  36. Labhasetwar, V. D., Dorle, A. K. Nanoparticles — colloidal drug delivery system for primaquine and metronidazole. J. Controlled Rel. 12 (1990) 113–119.

    Google Scholar 

  37. Lherm, C., Couvreur, P., Loiseau, P., Bories, C., Gayral, P. Unloaded polyisobutylcyanoacrylate nanoparticles: efficiency against bloodstream trypanosomes. J. Pharm. Pharmacol. 39 (1986) 650–652.

    Google Scholar 

  38. Youssef, M., Fattal, E., Alonso, M.-J., Roblot-Treupel, L., Sauzières, J., Tancrède, C., Omnès, A., Couvreur, P., Andremont, A. Effectiveness of nanoparticle-bound ampicillin in the treatment ofListeria monocytogenes infections in athymic nude mice. Antimicrob. Agents Chemother. 32 (1988) 1204–1207.

    Google Scholar 

  39. Fattal, E., Rojas, J., Andremont, A., Couvreur, P.: Efficacité comparée de nanoparticles et de liposomes chargés en ampicilline dans le traitement de la listériose et de la salmonellose expérimentales chez la souris. Proc. 5th Int. Conf. Pharm. Technol., Paris 1989, Vol. III, APGI, Chatenay Malabry 1989, pp. 72–79.

  40. Fattal, E., Youssef, M., Couvreur, P., Andremont, A. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob. Agents Chemother. 33 (1989) 1540–1543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuter, J. Liposomes and nanoparticles as vehicles for antibiotics. Infection 19 (Suppl 4), S224–S228 (1991). https://doi.org/10.1007/BF01644038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644038

Keywords

Navigation