Skip to main content
Log in

Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Aerobic composting is an efficient and environmentally friendly method of converting organic waste into nontoxic fertilizers or soil quality enhancers. The quality of the resultant compost depends greatly upon the composition of the substrate used. The initial carbon-to-nitrogen (C/N) ratio of the substrate is an important factor affecting the composting process. This study elucidated how initial C/N ratios affect the biodegradation of lignocellulose, due to changes in microbial community structure. Four different C/N ratios (20:1, 25:1, 30:1, and 35:1) were examined during a 35-day composting process. The degradation of cellulose, hemicellulose, and lignin was highest (35.7%, 30.6%, and 19.1% respectively) at a 30:1 C/N ratio; after 30 days, the 25:1 C/N ratio ranked second in terms of lignocellulosic degradation rate. The 30:1 C/N ratio further promoted the growth of functional microorganisms responsible for lignocellulose degradation (Luteimonas, Sphingobium, Trichoderma, Chaetomium, and Rosellinia), while the growth of dominant pathogenic microbes (Erwinia and Ulocladium) decreased significantly. These results confirm that the initial C/N ratio of the substrate has a significant effect on the microbial community and degradation of organic matter, during walnut branch composting. This process could therefore offer an alternative means of efficient recycling and recovery of waste branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Statistics Bureau of Xinjiang Uygur Autonomous Region (2018) Xinjiang Statistical Yearbook. China Statistical Press, Beijing

    Google Scholar 

  2. Sánchez ÓJ, Ospina DA, Montoya S (2017) Compost supplementation with nutrients and microorganisms in composting process. Waste Manag 69(4):136–153. https://doi.org/10.1016/j.wasman.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  3. Harindintwali JD, Zhou J, Muhoza B et al (2021) Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. J Environ Manag 293(9):112856. https://doi.org/10.1016/j.jenvman.2021.112856

    Article  CAS  Google Scholar 

  4. Shrestha P, Small GE, Kay A (2020) Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. PLoS ONE 3(3):11–15. https://doi.org/10.1371/journal.pone.0230996

    Article  CAS  Google Scholar 

  5. Xiong CH, Yang D, Xia FQ et al (2016) Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang. China Sci Rep 6(1):36912. https://doi.org/10.1038/srep36912

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Wang C, Chen HYH et al (2020) Responses of C: N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant Soil 456(9):277–287. https://doi.org/10.1007/s11104-020-04717-8

    Article  CAS  Google Scholar 

  7. Fan S, Jiang CC, Dong CX et al (2017) Effects of continuous application of branch compost on root growth and distribution of pear trees. J Fruit Sci 34(7):1274–1285

    Google Scholar 

  8. Zhao P, Tang XP, Wu J et al (2020) The effects of microorganisms and C/N ratio on compost maturity of fruit mulberry branches. Agric Eng 10(1):51–56

    Google Scholar 

  9. Sun HW, Shi WY, Cai CJ et al (2020) Responses of microbial structures, functions, metabolic pathways and community interactions to different C/N ratios in aerobic nitrification. Bioresour Technol 311:123422. https://doi.org/10.1016/j.biortech.2020.123422

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Cui H, Shi J et al (2015) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresour Technol 198:395–402. https://doi.org/10.1016/j.biortech.2015.09.041

    Article  CAS  PubMed  Google Scholar 

  11. Choi YJ, Ryu JW, Lee SR (2020) Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Anim Sci Technol 62(1):74–83

    Article  CAS  Google Scholar 

  12. Jain MS, Jambhulkar R, Kalamdhad AS (2018) Biochar amendment for batch composting of nitrogen rich organic waste: effect on degradation kinetics, composting physics and nutritional properties. Bioresour Technol 253(7):204–213. https://doi.org/10.1016/j.biortech.2018.01.038

    Article  CAS  PubMed  Google Scholar 

  13. Zheng ZH, Cai YF, Zhang YZ et al (2021) The effects of C/N (10–25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion. Water Res 188:116466. https://doi.org/10.1016/j.watres.2020.116466

    Article  CAS  PubMed  Google Scholar 

  14. Kumar M, Ou YL, Lin JG (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Manag 30(4):602–609. https://doi.org/10.1016/j.wasman.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Yu C, Wang X et al (2020) Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn Stover mix composting. Bioresour Technol 297:122410. https://doi.org/10.1016/j.biortech.2019.122410

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Yu X, Xiong WL et al (2020) Enhancing robustness of aerobic granule sludge under low C/N ratios with addition of kitchen wastewater. J Environ Manag 265:110503. https://doi.org/10.1016/j.jenvman.2020.110503

    Article  CAS  Google Scholar 

  17. Wang RF, Liu C, Cao YF (2017) Fertilizer efficiency of pig manure compost and its products with different C/N ratios. China Soil and Fertil 6(4):127–134

    Google Scholar 

  18. Yin Z (2016) Effects of different C/N and microbial agent treatments on composting effect of grape pruning branches. Ningxia Univ 39:102–107

    Google Scholar 

  19. Jackson ML (1959) Soil chemical analysis Prentice-Hall Inc Englewood Cliffs. NJ. https://doi.org/10.1002/jpln.19590850311

    Article  Google Scholar 

  20. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Anal Chem. https://doi.org/10.1093/jaoac/50.1.50

    Article  Google Scholar 

  21. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, NY USA

    Book  Google Scholar 

  22. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomics communities. Bioinformatics 26:715–721

    Article  CAS  Google Scholar 

  23. Prodan A, Tremaroli V, Brolin H et al (2020) Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 15:e0227434. https://doi.org/10.1371/journal.pone.0227434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim YJ, Cribbie RA (2018) ANOVA and the variance homogeneity assumption: exploring a better gatekeeper. Br J Math Stat Psychol 71(1):1–12. https://doi.org/10.1111/bmsp.12103

    Article  PubMed  Google Scholar 

  26. Hunter AH (1998) Laboratory and greenhouse techniques for nutrient survey to determine the soil amendments required for optimum plant growth. Agro Serv Int. https://doi.org/10.3923/ajpnft.2011.23.35

    Article  Google Scholar 

  27. Ito K, Murphy D (2013) Application of ggplot2 to Pharmacometric Graphics. Pharmacomet Syst Pharmacol. https://doi.org/10.1038/psp.2013.56

    Article  Google Scholar 

  28. Dowel S, Portch S (1988) A Systematic approach for determining soil nutrient constrains and establishing balanced fertilizer recommendations for sustained high yields. Agriculture Press, Beijing, pp 243–251

    Google Scholar 

  29. Liu W, Wang S, Zhang J et al (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour Technol 154(6):148–154. https://doi.org/10.1016/j.biortech.2013.12.022

    Article  CAS  Google Scholar 

  30. Harrison BP, Chopra E, Ryals R et al (2020) Quantifying the farmland application of compost to help meet California’s organic waste diversion law. Environ Sci Technol 54(7):4545–4553. https://doi.org/10.1021/acs.est.9b05377

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, Dong D, Wang H et al (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9(1):1–12. https://doi.org/10.1186/s13068-016-0440-2

    Article  CAS  Google Scholar 

  32. Dix NJ, Webster J (1995) Fungal ecology. Fungi of soil and rhizosphere. Springer, Dordrecht, pp 172–202

    Book  Google Scholar 

  33. Hussain N, Das S, Goswami L et al (2018) Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: assessment of maturity time, microbial community structure, and economic benefit. J Clean Prod 182:414–426. https://doi.org/10.1016/j.jclepro.2018.01.241

    Article  CAS  Google Scholar 

  34. Luo Y, Liang J, Zeng G et al (2017) Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. Waste Manag 71:109–114. https://doi.org/10.1016/j.wasman.2017.09.023

    Article  PubMed  Google Scholar 

  35. Rahimi H, Sattler ML, Hossain MDS et al (2020) Boosting landfill gas production from lignin-containing wastes via termite hindgut microorganism. Waste Manag 105(3):299–308. https://doi.org/10.1016/j.wasman.2020.02.007

    Article  CAS  PubMed  Google Scholar 

  36. Kumar M, Revathi K, Khanna S (2015) Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydr Polym 134:761–766. https://doi.org/10.1016/j.carbpol.2015.08.072

    Article  CAS  PubMed  Google Scholar 

  37. Ntougias S, Lapidus A, Han J et al (2014) High quality draft genome sequence of Olivibacter sitiensis type strain (AW-6(T)), a diphenol degrader with genes involved in the catechol pathway. Stand Genomic Sci 9(3):783–793. https://doi.org/10.4056/sigs.5088950

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ioannou P, Mavrikaki V, Kofteridis DP (2020) Roseomonas species infections in humans: a systematic review. J Chemother 32(5):226–236. https://doi.org/10.1080/1120009X.2020.1785742

    Article  CAS  PubMed  Google Scholar 

  39. Healy B, Cooney S, O’Brien S et al (2010) Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 4:339–350. https://doi.org/10.1089/fpd.2009.0379

    Article  Google Scholar 

  40. Pertile G, Panek J, Oszust K et al (2018) intraspecific functional and genetic diversity of Petriella setifera. PeerJ 6:e4420. https://doi.org/10.7717/peerj.4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wittstein K, Cordsmeier A, Lambert C et al (2020) Identification of Rosellinia species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus Dematophora as inferred from polythetic taxonomy. Stud Mycol 96:1–16. https://doi.org/10.1016/j.simyco.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang X, Gu C, Lin Y (2020) A novel fungal laccase from Sordaria macrospora k-hell: expression, characterization, and application for lignin degradation. Bioprocess Biosyst Eng 43:1133–1139. https://doi.org/10.1007/s00449-020-02309-5

    Article  CAS  PubMed  Google Scholar 

  43. May RC, Stone NR, Wiesner DL et al (2016) Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 14:106–117. https://doi.org/10.1038/nrmicro.2015.6

    Article  CAS  PubMed  Google Scholar 

  44. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro2637

    Article  PubMed  Google Scholar 

  45. Piqué N, Miñana-Galbis D, Merino S et al (2015) Virulence Factors of Erwinia amylovora: a review. Int J Mol Sci 16(6):12836–12854. https://doi.org/10.3390/ijms160612836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geng Y, Li Z, Xia LY et al (2014) Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium. Mycologia 106:649–665. https://doi.org/10.3852/13-383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This study was financially supported by the Xinjiang Academy of Agricultural Sciences Young Science and Technology Backbone Innovation Ability Training Project (xjnkq-2022019), the Forestry Development Subsidy Fund Project (Project No. XJLYKJ-2021–15), and the Regional Collaborative Innovation Special Project (Project No. 2021E02022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by YX and LZ. The manuscript was also written by JD, JC, XY, XW, ZW and LF. All authors contributed to manuscript revision and have read and approved the final manuscript.

Corresponding author

Correspondence to Lei Feng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Informed consent statement

Not applicable.

Institutional review board statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 354 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhou, L., Dai, J. et al. Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting. Bioprocess Biosyst Eng 45, 1163–1174 (2022). https://doi.org/10.1007/s00449-022-02732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02732-w

Keywords

Navigation