Skip to main content
Log in

circRNA-miRNA-mRNA network analysis to explore the pathogenesis of abnormal spermatogenesis due to aberrant m6A methylation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Many studies have shown that circRNAs and miRNAs play important roles in many different life processes. However, the function of circRNAs in spermatogenesis remains unknown. Here, we aimed to explore the mechanisms whereby circRNA-miRNAs-mRNAs regulate abnormal m6A methylation in GC-1spg spermatogonia. We first reduced m6A methylation in GC-1spg whole cells after knocking down the m6A methyltransferase enzyme, METTL3. Then, we performed circRNA- and miRNA-seq on GC-1spg cells with low m6A methylation and identified 48 and 50 differentially expressed circRNAs and miRNAs, respectively. We also predicted the targets of the differentially expressed miRNAs by using Miranda software and further constructed the differentially expressed circRNA-differentially expressed miRNA-mRNA ceRNA network. GO analysis was performed on the differentially expressed circRNAs and miRNA-targeted mRNAs, and an interaction network between the proteins of interest was constructed using Cytoscape. The final GO analysis showed that the target mRNAs were involved in sperm formation. Therefore, a PPI network was subsequently constructed and 2 hub genes (H2afx and Dnmt3a) were identified. In this study, we constructed a ceRNA network and explored the regulatory roles of circRNAs and miRNAs in the pathogenesis of abnormal spermatogenesis caused by low levels of methylated m6A. Also, we identified two pivotal genes that may be key factors in infertility caused by abnormal m6A methylation. This may provide some ideas for the treatment of infertility resulting from abnormal spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Available underlying data will be provided upon reasonable request.

References

  • Ambros V (2003) Microrna pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113(6):673–676

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Wang G, Wang J, Li C, Zhang L (2019) Hsa_circ_101280 promotes hepatocellular carcinoma by regulating mir-375/jak2. Immunol Cell Biol 97(2):218–228

    Article  CAS  PubMed  Google Scholar 

  • Carrell DT (2012) Epigenetics of the male gamete. Fertil Steril 97(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, N.Y.), 303(5654), 83–86

  • Chen L, Yang L (2015) Regulation of Circrna Biogenesis Rna Biol 12(4):381–388

    PubMed  Google Scholar 

  • Chen X, Li X, Guo J, Zhang P, Zeng W (2017) The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechno 8:35

    Article  Google Scholar 

  • Chen Z, Zhang Y (2020) Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 89:135–158

    Article  CAS  PubMed  Google Scholar 

  • Chioccarelli T, Manfrevola F, Ferraro B, Sellitto C, Cobellis G, Migliaccio M et al (2019) Expression patterns of circular RNAs in high quality and poor quality human spermatozoa. Front Endocrinol 10:435

    Article  Google Scholar 

  • Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R et al (2020) Histone post-translational modifications and circRNAs in mouse and human spermatozoa: potential epigenetic marks to assess human sperm quality. J Clin Med 9(3):640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dada R, Kumar M, Jesudasan R, Fernández J, Gosálvez L, J. Agarwal A. (2012) Epigenetics and its role in male infertility. J Assist Reprod Gen 29(3):213–223

    Article  Google Scholar 

  • de Rooij DG (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction (cambridge, England) 121(3):347–354

    Article  PubMed  Google Scholar 

  • Desimio MG, Cesari E, Sorrenti M, De Felici M, Farini D (2021) Stimulated by retinoic acid gene 8 (STRA8) interacts with the germ cell specific bHLH factor SOHLH1 and represses c-KIT expression in vitro. J Cell Mol Med 25(1):383–396

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S (2012) Topology of the human and mouse m6a RNA methylomes revealed by m6a-seq., (Vol. 485,201–206

  • Dura M, Teissandier A, Armand M, Barau J, Lapoujade C, Fouchet P et al (2022) DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 54(4):469–480

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah S, Celeste K, A. Romanienko P. J. Camerini-Otero R. D. Bonner W. M. et al (2003) H2ax is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4(4):497–508

    Article  CAS  PubMed  Google Scholar 

  • Finocchi F, Pelloni M, Balercia G, Pallotti F, Radicioni A, F. Lenzi A. et al (2020) Seminal plasma miRNAs in Klinefelter syndrome and in obstructive and non-obstructive azoospermia. Mol Biol Rep 47(6):4373–4382

    Article  CAS  PubMed  Google Scholar 

  • Ge P, Zhang J, Zhou L, Lv M, Li Y, Wang J et al (2019) CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reproductive Biology and Endocrinology : RB&E 17(1):100

    Article  CAS  Google Scholar 

  • Griswold MD (2016) Spermatogenesis: the commitment to meiosis. Physiol Rev 96(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Gui Y, Yuan S (2021) Epigenetic regulations in mammalian spermatogenesis: RNA-m(6)a modification and beyond. Cellular and Molecular Life Sciences : CMLS 78(11):4893–4905

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, de Sousa C, Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE 3(3):e1738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y et al (2017) Ythdc2 is an n(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27(9):1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, N.Y.), 19(2), 141–157

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E et al (2004) Essential role for de novo DNA methyltransferase dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y et al (2007) Role of the dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Kherraf Z, Cazin C, Bouker A, Mustapha FB, Hennebicq S, S. Septier A. et al (2022) Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am J Hum Genet 109(3):508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T et al (2016) Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. Rna Biol 13(10):1011–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Hsu P, Xing J, Fang X, Lu J, Z. Zou Q. et al (2017) Mettl3-/mettl14-mediated mRNA n(6)-methyladenosine modulates murine spermatogenesis. Cell Res 27(10):1216–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79(4):696–703

    Article  CAS  PubMed  Google Scholar 

  • Manfrevola F, Chioccarelli T, Cobellis G, Fasano S, Ferraro B, Sellitto C et al (2020) CircRNA role and circRNA-dependent network (ceRNET) in asthenozoospermia. Front Endocrinol 11:395

    Article  Google Scholar 

  • Misir S, Wu N, Yang B, B. (2022) Specific expression and functions of circular RNAs. Cell Death Differ 29(3):481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development (cambridge, England) 99(3):371–382

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell L, Nicholls P, K. O’Bryan M. K. McLachlan R. I. Stanton P. G. (2011) Spermiation: the process of sperm release. Spermatogenesis 1(1):14–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang A, Rennert OM (2013) Protein acetylation and spermatogenesis. Reproductive System & Sexual Disorders S1:5

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone h2a variants h2ax and h2az. Curr Opin Genet Dev 12(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero Y, Meikar O, Papaioannou M, Conne D, Grey B, C. Weier M. et al (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE 6(10):e25241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F (2021) Epigenetics of male infertility: the role of DNA methylation. Frontiers in Cell and Developmental Biology 9:689624

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction (cambridge, England) 127(6):643–651

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y et al (2018) Alkbh5-dependent m6a demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. In Proceedings of the National Academy of Sciences 115(2):E325–E333

    Article  CAS  Google Scholar 

  • Testa E, Nardozi D, Antinozzi C, Faieta M, Di Cecca S, Caggiano C (2018) H2afx and mdc1 promote maintenance of genomic integrity in male germ cells. J Cell Sci, 131(6)

  • Wang S, Lv W, Li T, Zhang S, Wang H, Li X et al (2022) Dynamic regulation and functions of mRNA m6a modification. Cancer Cell Int 22(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang D, Zhu J, Hou C, Yang W (2014) Identification and expression pattern analysis of Piwi genes during the spermiogenesis of Portunus trituberculatus. Gene 534(2):240–248

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Yang YG, Feng H, Zhang XX, Wang C, Jiang L (2017a) Mettl3-mediated m6a regulates spermatogonial differentiation and meiosis initiation. Cell Res(27), 1100–1114

  • Xu K, Yang Y, Feng G, Sun B, Chen J, Li Y et al (2017b) Mettl3-mediated m(6)a regulates spermatogonial differentiation and meiosis initiation. Cell Res 27(9):1100–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J (2014) Mir-34c enhances mouse spermatogonial stem cells differentiation by targeting nanos2. J Cell Biochem 115(2):232–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wu H, Zheng L, Zhang H, Yang Y, Mao J (2022) Identification and characterization of circular RNAs in the testicular tissue of patients with non-obstructive azoospermia. Asian J Androl

  • Zhao J, Wang B, Yu H, Wang Y, Liu X, Zhang Q (2018) Tdrd1 is a germline-specific and sexually dimorphically expressed gene in Paralichthys olivaceus. Gene 673:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dahl J, Niu A, Fedorcsak Y, P. Huang C. M. Li C. J. et al (2013) Alkbh5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Chen W, Cui Y, Liu B, Yuan Q, Li Z et al (2020) Mirna-122-5p stimulates the proliferation and dna synthesis and inhibits the early apoptosis of human spermatogonial stem cells by targeting cbl and competing with lncrna casc7. Aging 12(24):25528–25546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Chen W, Jiang Y, He Z (2019) Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction (cambridge, England) 158(1):R15–R25

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Kirby JA, Chu C. Gou L (2021) Small noncoding RNAs in reproduction and infertility. Biomedicines, 9(12)

  • Zimmermann C, Romero Y, Warnefors M, Bilican A, Borel C, Smith L, B. et al (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS ONE 9(9):e107023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Dev Sooranna of Imperial College in London for editing the manuscript.

Funding

This work was supported by grants from the Guangxi Natural Science Foundation (No. 2020GXNSFBA297148 and AD20159062), the National Natural Science Foundation of China (No. 32102514, 31972996 and U20A2051), the Guangxi Science and Technology Major Project (No. GuiKe AA22068099), and the Bama County Program for Talents in Science and Technology, Guangxi, China (No. 202101265 and 202100174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Dandan Zhong, Liyin Zhang, and Kongwei Huang were responsible for the execution of the experiments and drawing diagrams. Dandan Zhong and Kongwei Huang participated in the writing of the manuscript. Kongwei Huang analyzed the sequencing data. Mengjie Chen and Yaling Chen were responsible for the analysis of experimental data. Qingyou Liu and Deshun Shi were involved in the revision of the manuscript. Hui Li was responsible for the experimental design and guided the project. Dandan Zhong and Liyin Zhang contributed equally to this work. All the authors read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 8114 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D., Zhang, L., Huang, K. et al. circRNA-miRNA-mRNA network analysis to explore the pathogenesis of abnormal spermatogenesis due to aberrant m6A methylation. Cell Tissue Res 392, 605–620 (2023). https://doi.org/10.1007/s00441-022-03725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03725-7

Keywords

Navigation