Skip to main content
Log in

Expression of arylalkylamine n-acetyltransferase (AANAT) and acetylserotonin o-methyltransferase (ASMT) in the corpus luteum of pregnant sows and synthesis of melatonin in luteal cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In vertebrates, melatonin is mainly synthesized from serotonin in the pineal gland. Many reports have documented that melatonin is also synthesized in the extra-pineal tissues, but the synthesis of melatonin in the corpus luteum (CL) of pregnant sows has never been studied. The objectives of this study were to evaluate the expression of melatonin-synthesizing enzymes, arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT), in the CL of sows during pregnancy and to investigate the synthesis of melatonin in luteal cells. Results showed that AANAT and ASMT were both expressed in the CL of sows during pregnancy, higher levels were observed in the early- and mid-stage CL, and the lowest abundance was found in the regressing CL (later-stage). The immunostaining for AANAT and ASMT was predominantly localized in the large luteal cells of porcine CL during pregnancy. Furthermore, melatonin was synthesized in luteal cells from serotonin in a dose- and time-dependent manner. And the expressions of AANAT and ASMT were upregulated by serotonin in luteal cells. In addition, progesterone (P4) secretion and cell viability were promoted in luteal cells treated with serotonin, and the stimulatory effects were blocked by luzindole (a non-selective MT1 and MT2 antagonist). Finally, the expressions of MT1 and MT2 were augmented by serotonin in luteal cells. In conclusion, this study demonstrates for the first time the developmental expression of AANAT and ASMT in the CL and a local synthesis of melatonin in luteal cells of pregnant sows, and suggests a paracrine and/or autocrine role for melatonin in luteal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amireault P, Dube F (2005) Serotonin and its antidepressant-sensitive transporter in mouse cumulus–oocyte complexes and early embryo. Biol Reprod 73:358–365

    Article  CAS  PubMed  Google Scholar 

  • Arosh JA, Banu SK, Chapdelaine P et al (2004) Prostaglandin biosynthesis, transport, and signaling in corpus luteum: a basis for autoregulation of luteal function. Endocrinology 145(5):2551–2560

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J, Wurtman RJ (1968) Photic and neural control of indoleamine metabolism in the rat pineal gland. Adv Pharmacol 6:157–166

    Article  CAS  PubMed  Google Scholar 

  • Ayre EA, Pang SF (1994) 2-[125I] Iodomelatonin binding sites in the testis and ovary: putative melatonin receptors in the gonads. Neurosignals 3:71–84

    Article  CAS  Google Scholar 

  • Bódis J, Hartmann G, Tinneberg HR et al (1993) Relationship between the monoamine, progesterone and oestradiol content in follicular fluid of preovulatory graafian follicles after superovulation treatment. Gynecol Obstet Invest 35:232–235

    Article  PubMed  Google Scholar 

  • Brzezinski A, Seibel MM, Lynch HJ et al (1987) Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 64:865–867

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski A, Fibich T, Cohen M et al (1992) Effects of melatonin on progesterone production by human granulosa lutein cells in culture. Fertil Steril 58:526–529

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA (2008) Thirty four years since the discovery of gastrointestinal melatonin. J Physiol Pharmacol 59:33col

  • Carbajo-Pescador S, Martin-Renedo j, Garcia-Palomo A, et al (2009) Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res 47:330–338

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 16:156–159

    Article  Google Scholar 

  • Drazen DL, Bilu D, Bilbo SD et al (2001) Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 5:R1476-1482

    Article  Google Scholar 

  • Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27:101–110

    Article  CAS  PubMed  Google Scholar 

  • Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108

    Article  CAS  PubMed  Google Scholar 

  • Eva K, Michael I (2001) Melatonin modulation of lymphocyte proliferation and Th1rTh2 cytokine expression. J Neuroimmunol 117:51–57

    Article  Google Scholar 

  • Faillace MP, Cutrera R, Sarmiento MI et al (1995) Evidence for local synthesis of melatonin in golden hamster retina. NeuroReport 6(15):2093–2095

    Article  CAS  PubMed  Google Scholar 

  • Ganguly K, Sharma AV, Reiter RJ et al (2010) Melatonin promotes angiogenesis during protection and healing of indomethacin-induced gastric ulcer: role of matrix metaloproteinase-2. J Pineal Res 49:130–140

    CAS  PubMed  Google Scholar 

  • Gilad E, Matzkin H, Zisapel N (1997) Interplay between sex steroids and melatonin in regulation of human benign prostate epithelial cell growth. J Clin Endocrinol Metabol 82:2535–3241

    Article  CAS  Google Scholar 

  • Itoh MT, Ishizuka B, Kuribayashi Y et al (1999) Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol Hum Reprod 5(5):402n, i

  • Kojima T, Mochizuki C, Mitaka T et al (1997) Effects of melatonin on proliferation, oxidative stress and Cx32 gap junction protein expression in primary cultures of adult rat hepatocytes. Cell Struct Funct 22:347–356

    Article  CAS  PubMed  Google Scholar 

  • Lincoln GA (1992) Administration of melatonin into the mediobasal hypothalamus as a continuous or intermittent signal affects the secretion of follicle stimulating hormone and prolactin in the ram. J Pineal Res 12:135–144

    Article  CAS  PubMed  Google Scholar 

  • Malpaux B, Migaud M, Tricoire H et al (2001) Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms 16:336–347

    Article  CAS  PubMed  Google Scholar 

  • Nakade O, Koyama H, Ariji H et al (1999) Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 27:106–111

    Article  CAS  PubMed  Google Scholar 

  • Olcese JM (2020) Melatonin and female reproduction: an expanding universe. Front Endocrinol 6:1–10

    Google Scholar 

  • Pandi-Perumal SR, Trakht I, Srinivasan V et al (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85:335–353

    Article  CAS  PubMed  Google Scholar 

  • Pedreros M, Ratto M, Guerra M (2011) Expression of functional melatonin MT1 receptors in equine luteal cells: in vitro effects of melatonin on progesterone secretion. Reprod Fert Develop 23:417–423

    Article  CAS  Google Scholar 

  • Pitzel L, Lüdemann S, Wuttke W (2000) Secretion and gene expression of metalloproteinases and gene expression of their inhibitors in porcine corpora lutea at different stages of the luteal phase. Biol Reprod 62:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Sharma R (2021) Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen Comp Endocr 300:1–13

    Article  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Godson C, Mahle CD et al (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92:8734–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JS (2001) Perspective: the ovarian follicle—a perspective in 2001. Endocrinology 142:2184–2193

    Article  CAS  PubMed  Google Scholar 

  • Sainz RM, Mayo JC, Tan DX et al (2003) Antioxdant activity of melatonin in Chinese hamster ovarian cells: changes in cellular proliferation and differentiation. Biochem Biophys Res Commun 302:625–634

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Itoh MT, Takahashi N et al (2013) The rat oocyte synthesizes melatonin. Reprod Fert Develop 25(4):674–682

    Article  CAS  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Pisarchik A, Semak I et al (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. Faseb J 16(8):896–898

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Tobin DJ, Zmijewski MA et al (2008) Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab 19:17–24

    Article  CAS  PubMed  Google Scholar 

  • Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N et al (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares JM, Masana MI, Erşahin C et al (2003) Functional melatonin receptors in rat ovaries at various stages of the oestrous cycle. J Pharmacol Exp Ther 306:694–702

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Nakamura Y, Takiguchi S et al (1998) Melatonin directly suppresses steroid production by preovulatory follicles in the cyclic hamster. J Pineal Res 25:135–141

    Article  CAS  PubMed  Google Scholar 

  • Webley GE, Hearn JP (1987) Local production of progesterone by the corpus luteum of the marmoset monkey in response to perfusion with chorionic gonadotrophin and melatonin in vivo. J Endocrinol 112:449–457

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Hu J, Zhao X et al (2018) Expression of melatonin and its related synthase and membrane receptors in the oestrous corpus luteum and corpus luteum verum of sheep. Reprod Dom Anim 53:1142–1148

    Article  CAS  Google Scholar 

  • Zhang WL, Wang ZY, Zhang L et al (2018) Melatonin stimulates the secretion of progesterone along with the expression of cholesterolside chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR) in corpus luteum of pregnant sows. Theriogenology 108:297–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang WL, Chen JX, Zhao YX et al (2019) The inhibitory effect of melatonin on mammary function of lactating dairy goats. Biol Reprod 100(2):455–467

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Shaanxi Provincial Key Research and Development Project (CN) (Grant Number: 2020NY-013) and Shaanxi Province Universities Scientific Fund (Grant Number: S202010712488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DW. Tong.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, Z., Peng, J. et al. Expression of arylalkylamine n-acetyltransferase (AANAT) and acetylserotonin o-methyltransferase (ASMT) in the corpus luteum of pregnant sows and synthesis of melatonin in luteal cells. Cell Tissue Res 388, 167–179 (2022). https://doi.org/10.1007/s00441-021-03556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03556-y

Keywords

Navigation