Skip to main content
Log in

The Absence of Pineal Melatonin Abolishes the Daily Rhythm of Tph1 (Tryptophan Hydroxylase 1), Asmt (Acetylserotonin O-Methyltransferase), and Aanat (Aralkylamine N-Acetyltransferase) mRNA Expressions in Rat Testes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study examined the effects of pinealectomy in Wistar rats and melatonin replacement therapy on the daily mRNA expression of melatonin (Tph1, Aanat, Asmt, Mt1, Mt2, and Rorα), and steroidogenic (Star, 17βhsd3, and Lhr) related genes as well as clock genes (Rev-erbα, Bmal1, Per1, Per2, Cry1, and Cry2) in testes. The testes of control animals express the Tph1, Aanat, and Asmt and Per2 genes with 24-h rhythms in mRNA, reaching the maximal values during the dark phase. Pinealectomy abolished and melatonin treatment restored the 24-h rhythmicity. Daytime differences in mRNA expression were significant for Star, Lhr, Mt1, Mt2, Rorα, Rev-erbα, Bmal1, Cry1, and Cry2 genes in testes of control rats. Conversely, 17βhsd3 and Per1 mRNA expression did not show a daytime difference in testes of control animals. Pinealectomy abolished the peak time of Mt1 and Mt2 mRNA expression, phase shifted the peak time of Star, Rorα, Rev-erbα, Bmal1, and Cry2 mRNA expression, downregulated the 24-h Lhr mRNA expression, and inverted the peak time of Per1, Per2, and Cry1 mRNA expression to the light phase. The melatonin replacement therapy completely restored the control levels of Lhr, Rev-erbα, and Per1 mRNA expression patterns, partially restored the daily control of Star, Mt2, Rorα, Bmal1, Cry1, and Cry2 mRNA expression but did not re-establish the daily control of Mt1 mRNA expression. This suggests that the daily mRNA expression of these genes is probably driven by pineal melatonin and melatonin treatment restores (partially or completely) the daily control of gene expression patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reiter RJ, Fraschini F (1969) Endocrine aspects of the mammalian pineal gland: a review. Neoroendocrinology 5:219–255

    CAS  Google Scholar 

  2. Cipolla-Neto J, Amaral FG (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr Rev 39:990–1028

    PubMed  Google Scholar 

  3. Rath MF, Coon ST, Amaral FG, Weller JL, Møller M, Klein DC (2016) Melatonin synthesis: acetylserotonin O-methytransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland. Endocrinology 157:2028–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395

    CAS  PubMed  Google Scholar 

  5. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664

    CAS  PubMed  Google Scholar 

  6. King DP, Takahashi JS (2000) Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 23:713–742

    CAS  PubMed  Google Scholar 

  7. Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11

    CAS  PubMed  Google Scholar 

  8. Torres-Farlan C, Seron-Ferre M, Dinet V, Korf H-W (2006) Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL). J Pineal Res 40:64–70

    Google Scholar 

  9. Alonso-Vale MIC, Andreotti S, Mukai PY, Lima FHB (2008) Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J Pineal Res 45:422–429

    CAS  PubMed  Google Scholar 

  10. Farias TSM, Chimin P, Oliveira AC, Amaral FG, Chimin P, Proença ARA, Leal FLT, Sertié RAL et al (2015) Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J Pineal Res 58:251–261

    Google Scholar 

  11. Acuña-Castroviejo D, Escames G, Venegas C, Diaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025

    PubMed  Google Scholar 

  12. Sakaguchi K, Itoh MT, Takahashi N, Tamuri W, Ishizuka B (2013) The rat oocyte synthesizes melatonin. Reprod Fertil Dev 25:674–682

    CAS  PubMed  Google Scholar 

  13. Coelho LA, Peres R, Amaral FG, Reiter RJ, Cipolla-Neto J (2015) Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: Changes after pinealectomy. J Pineal Res 58:490–499

    CAS  PubMed  Google Scholar 

  14. He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J et al (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int J Mol Sci 17:939. https://doi.org/10.3390/ijms17060939

    Article  CAS  PubMed Central  Google Scholar 

  15. Gonzalez-Arto M, Hamilton TRS, Gallego M, Gaspar-Torrubia E, Aguilar D, Serrano-Blesa E, Abecia JA, Pé-Pérez R et al (2016) Evidence of melatonin synthesis in the ram reproductive tract. Andrology 4:163–171

    CAS  PubMed  Google Scholar 

  16. Tijmes M, Pedraza R, Valladares L (1996) Melatonin in the rat testis: evidence for local synthesis. Steroids 61:65–68

    CAS  PubMed  Google Scholar 

  17. Itoh MT, Ishizuka B, Kuribayashi Y, Amemiya A, Sumi Y (1999) Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol Hum Reprod 5:402–408

    CAS  PubMed  Google Scholar 

  18. Li C, Zhou X (2015) Melatonin and male reproduction. Clin Chim Acta 446:175–180

    CAS  PubMed  Google Scholar 

  19. Frungieri MB, Mayerhofer A, Karina Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI (2005) Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology 146:1541–1552

    CAS  PubMed  Google Scholar 

  20. Qin F, Zhang J, Zan L, Guo W, Wang J, Chen L, Cao Y, Shen O et al (2015) Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. RBM Online 31:638–646

    CAS  PubMed  Google Scholar 

  21. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74:3863–3881

    CAS  PubMed  Google Scholar 

  22. Vera H, Tijmes M, Ronco AM, Valladares L (1993) Melatonin binding sites in interstitial cells from immature rat testes. Biol Res 26:337–340

    CAS  PubMed  Google Scholar 

  23. Izzo G, Francesco A, Ferrara D, Campitiello MR, Serino I, Minucci S, d’Istria M (2010) Expression of melatonin (MT1, MT2) and melatonin-related receptors in the adult rat testes and during development. Zygote 18:257–264

    CAS  PubMed  Google Scholar 

  24. Pozo D, Garcia-Mauriño S, Guerrero JM, Calvo JR (2004) mRNA expression of nuclear receptor RZR/RORα, melatonin membrane receptor MT1 and hydroxindole-O-methytranferase in different populations of human immune cells. J Pineal Res 37:48–54

    CAS  PubMed  Google Scholar 

  25. Smirnov AN (2001) Nuclear melatonin receptors. Biochemistry 66:19–26

    CAS  PubMed  Google Scholar 

  26. Venegas C, García JA, Doerrier HV, Volt H, Escames G, López LS, Reiter RJ, Acuña-Castroviejo D (2013) Analysis of the daily changes of melatonin receptors in the rat liver. J Pineal Res 54:313–321

    CAS  PubMed  Google Scholar 

  27. Hoffman RA, Reiter RJ (1965) Rapid pinealectomy in hamsters and other small rodents. Anat Rec 53:19–22

    Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  29. Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy NV, De Paepe A, Speleman F (2002) Accurate normatization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    PubMed  PubMed Central  Google Scholar 

  30. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6:305–323

    CAS  PubMed  Google Scholar 

  31. Stefulj J, Hörtner M, Ghosh M, Schauenstein K, Rinner I, Wölfler A, Semmler J, Liebmann M (2001) Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res 30:243–247

    CAS  PubMed  Google Scholar 

  32. Luboshitzky R, Shen-Orr HP (2002) Seminal plasma melatonin and gonadal steroids concentrations in normal men. Arch Androl 48:225–232

    CAS  PubMed  Google Scholar 

  33. Rossi SP, Windschetti S, Matzkin ME, Terradas C, Ponzio R, Puigdomenech E, Levalle O, Calandra RS et al (2014) Melatonin in testes of infertile men: evidence for anti-proliferative and anti-oxidant effects on local macrophage and mast cell populations. Andrology 2:436–449

    CAS  PubMed  Google Scholar 

  34. Rossi SP, Matzkin ME, Terradas C, Ponzio R, Puigdomenech E, Levalle O, Calandra RS, Frungieri MB (2012) New insights into melatonin/CRH signaling in the hamster Leydig cells. Gen Comp Endocrinol 178:153–163

    CAS  PubMed  Google Scholar 

  35. Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244

    CAS  PubMed  Google Scholar 

  36. Qin F, Zhang J, Cao H, Guo W, Chen L, Shen O, Sun J, Yi C et al (2014) Circadian alterations of reproductive functional markers in male rats exposed to 1800 Mhz radiofrequency field. Chronobiol Int 31:123–133

    CAS  PubMed  Google Scholar 

  37. Liu X, Xu Y, Shi Q, Lu Q, Ma S, Xu X, Guo X (2013) Alterations of reproductive hormones and receptors of male rats at the winter and summer solstices and the effects of pinealectomy. Neuroendocrinol Lett 34:143–153

    CAS  PubMed  Google Scholar 

  38. Stocco DM, Wang X, Jo Y, Manna PR (2005) Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19:2647–2659

    CAS  PubMed  Google Scholar 

  39. Wu C-S, Leu S-F, Yang H-Y, Huang B-M (2001) Melatonin inhibits the expression of steroidogenic acute regulatory protein and steroidogenesis in MA-10 cells. J Androl 22:245–254

    CAS  PubMed  Google Scholar 

  40. González-Arto M, Vicente-Carrillo A, Martinez-Pastor F, Fernández-Alegre E, Roca J, Miró J, Rigau T, Rodríguez-Gil JE et al (2016) Melatonin receptors MT1 and MT2 are expressed in spermatozoa of several seasonal and nonseasonal breeder species. Theriogenology 86:1958–1968

    PubMed  Google Scholar 

  41. Espino J, Ortiz A, Bejarano I, Lozano GM, Monllor F, García JF, Rodríguez AB, Pariente JA (2011) Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil Steril 95:2290–2296

    CAS  PubMed  Google Scholar 

  42. Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12:1211–1220

    CAS  PubMed  Google Scholar 

  43. Nakajima Y, Ikeda M, Kimura T, Honma S, Ohmiya Y, Honma K (2004) Bidirectional role of orphan nuclear receptor RORα in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett 565:122–126

    CAS  PubMed  Google Scholar 

  44. Kennaway DJ, Boden MJ, Varcoe TJ (2012) Circadian rhythms and fertility. Mol Cell Endocrinol 349:56–61

    CAS  PubMed  Google Scholar 

  45. Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S et al (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythm 23:26–36

    CAS  Google Scholar 

  46. Reiter RJ (1968) The pineal gland and gonadal development in male rats and hamsters. Fertil Steril 19:1009–1017

    CAS  PubMed  Google Scholar 

  47. Majrashi KAA, Barakat IAH, Al-Himaidi AR, Adham KG (2017) Effects of exogenous melatonin treatment on the reproductive characteristics and progeny of male rats exposed to different periods from light and darkness. Physiol Res 66:507–518

    PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (2014/17830-9), FAPESP (2014/50457-0), São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Coelho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, L.A., Andrade-Silva, J., Motta-Teixeira, L.C. et al. The Absence of Pineal Melatonin Abolishes the Daily Rhythm of Tph1 (Tryptophan Hydroxylase 1), Asmt (Acetylserotonin O-Methyltransferase), and Aanat (Aralkylamine N-Acetyltransferase) mRNA Expressions in Rat Testes. Mol Neurobiol 56, 7800–7809 (2019). https://doi.org/10.1007/s12035-019-1626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1626-y

Keywords

Navigation