Skip to main content
Log in

Understanding the genomic selection for crop improvement: current progress and future prospects

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Although increased use of modern breeding techniques and technology has resulted in long-term genetic gain, the pace of genetic gain must be sped up to satisfy global agricultural demand. However, marker-assisted selection has proven its potential for improving qualitative traits with large effects regulated by one to few genes. Its contribution to the improvement of the quantitative traits regulated by a number of small-effect genes is modest. In this context, genomic selection (GS) has been regarded as the most promising method for genetically enhancing complicated features that are regulated by several genes, each of which has minor effects. By examining a population's phenotypes and high-density marker scores, genomic selection can forecast the breeding potential of individual lines. The fact that GS uses all marker data in the prediction model prevents skewed marker effect estimations and maximizes the amount of variation caused by small-effect QTL. It has the ability to speed up the breeding cycle and as a consequence of which superior genotypes are selected rapidly. Developing the best GS models while taking into account non-additive effects, genotype-by-environment interaction, and cost-effectiveness will enable the widespread implementation of GS in plants. These steps will also increase heritability estimation and prediction accuracy. This review focuses on the shift from conventional selection methods to GS, underlying statistical tools and methodologies, the state of GS research in agricultural plants, and prospects for its effective use in the creation of climate-resilient crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Beavis WD (1998) QTL analyses: Power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, FL, pp 145–162

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Science 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Breeding for Quantitative traits in plants, 2nd edn., Stemma Press, Woodbury, Minnesota, ISBN 978-0-9720724-1-0

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci. 47:1082–1090

    Article  Google Scholar 

  • Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental co-variables for QTL-by-environment interactions, with an example in maize. Genetics. 177(3):1801–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. 52:707–719

  • Calus M, Veerkamp R (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    Article  CAS  PubMed  Google Scholar 

  • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterization as an aid to wheat improvement. Interpreting genotype-environment interactions by modelling water-deficit patterns in NorthEastern Australia. J Exp Bot 62(6):1743–175

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Philosophical. Trans Royal Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Cooper M (1999) Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res 64(1–2):13–34

    Article  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ et al (2014) (2014) Predicting the future of plant breeding. Complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 65(4):311

    Article  CAS  Google Scholar 

  • Crossa J, Campos Gde L, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 186(2):713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-López O, Jarquin D, De Los Campos G, Burgueno J, GonzalezCamacho JM, Perez-Elizalde S, Beyene Y et al (2017) Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome wide prediction in plant improvement. Trends Plant Sci. 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Fernando R, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Select Evolut 21(421):467–477

    Article  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semi-parametric procedures. Genetics. 173(3):1761–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tucker DM, Lu J et al (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theoret Appl Genet 124:261–275

    Article  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the bayesian alphabet for genomic selection. BMC Bioinform 12:186–197

    Article  Google Scholar 

  • Hayes B (2007) QTL mapping, MAS, and genomic selection. Animal Breeding & Genetics, Department of Animal Science, Iowa State Univ, Ames

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci. 50:1681–1690

    Article  Google Scholar 

  • Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, Grondona M, Zambelli A, Windhausen VS, Mathews K, Gorjanc G (2014) Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci 54(4):1476–1488

    Article  Google Scholar 

  • Isidro J, Jannink JL, Akdemir D et al (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158

    Article  PubMed  Google Scholar 

  • Jonas E, de Koning DJ (2013) Does Genomic Selection have a future in plant breeding? Trends Biotechnol. 31:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80(Pt 2):137–42

    Article  PubMed  Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, Mishra CN, Khan H, Gangadhara K, Uday G, Singh G (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113(3):1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li WX, Zou C, Prasanna BM et al (2018) Factors affecting genomic selection revealed by empirical evidence in Maize. Crop J. 6:341–352

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157(4):1819–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147(3):969–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for pre-harvest sprouting resistance in white wheat. Theor. Appl. Genet. 119:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot. https://doi.org/10.1093/aob/mcs109

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cabal MA, Vazquez AI, Gianola D, Rosa GJ, Weigel KA (2012) Accuracy of genome-enabled prediction in a dairy cattle population using different cross-validation layouts. Front Genet 28:3–27

    Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genome-wide selection in Maize. Crop Sci 49:1165–1176

    Article  Google Scholar 

  • Priyadarshini L, Samal KC, Sahoo JP, Mohapatra U (2020) Morphological, biochemical and molecular characterization of some promising potato (Solanum tuberosum L.) cultivars of Odisha. J Pharmacog Phytochem. 9:1657–1664

    CAS  Google Scholar 

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic selection in cereal breeding. Agronomy 9(2):95

    Article  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, Sorrells ME (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome. 8(2):eplantgenome2014.10.0074

  • Sahoo JP, Sharma V (2018) Impact of LOD score and recombination frequencies on the microsatellite marker based linkage map for drought tolerance in kharif rice of Assam. Int J Curr Microbiol Appl Sci 7:3299–3304

    Article  CAS  Google Scholar 

  • Sahoo JP, Singh SK, Saha D (2018) A review on linkage mapping for drought stress tolerance in rice. J Pharmacog Phytochem 7:2149–2157

    Google Scholar 

  • Sahoo JP, Sharma V, Verma RK, Chetia SK, Baruah AR, Modi MK, Yadav VK (2019) Linkage analysis for drought tolerance in kharif rice of Assam using microsatellite markers. Indian J Trad Knowledge. 18:371–375

    Google Scholar 

  • Sahoo JP, Behera L, Sharma SS, Praveena J, Nayak SK, Samal KC (2020) Omics studies and systems biology perspective towards abiotic stress response in plants. Am J Plant Sci 11:2172–2194

    Article  CAS  Google Scholar 

  • Sahoo JP, Mohapatra U, Mishra P (2020) An outlook on metabolic pathway engineering in crop plants. Arch Agric Environm Sci 5:431–434

    Article  Google Scholar 

  • Sahoo JP, Behera L, Praveena J, Sawant S, Mishra A, Sharma SS, Samal KC (2021) The golden spice turmeric (Curcuma longa) and its feasible benefits in prospering human health—a review. Am J Plant Sci 12:455–475

    Article  CAS  Google Scholar 

  • Sahoo JP, Mishra AP, Samal KC, Dash AK (2021) Insights into the antibiotic resistance in Biofilms–A Review. Environm Conserv J 22:59–67

    CAS  Google Scholar 

  • Sahoo JP, Mohapatra U, Saha D, Mohanty IC, Samal KC (2022a) Linkage disequilibrium mapping: A journey from traditional breeding to molecular breeding in crop plants. Indian J Trad Knowledge. 21:434–442

    Google Scholar 

  • Sahoo JP, Dash D, Moharana A, Mahapatra M, Sahoo AK, Samal KC (2022b) The role of transcription factors in response to biotic stresses in Maize. In: Wani SH, Nataraj V, Singh GP (Eds) Transcription Factors for Biotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-12990-2_9

  • Sahoo JP, Mishra P, Mishra AP et al (2022c) Physiological, biochemical, and molecular responses of rice (Oryza sativa L.) towards elevated ozone tolerance. Cereal Res Commun. https://doi.org/10.1007/s42976-022-00316-8

    Article  Google Scholar 

  • Sahoo JP, Samal KC, Tripathy SK, Lenka D, Mishra P, Behera L, Acharya LK, Sunani SK, Behera B (2022d) Understanding the genetics of Cercospora leaf spot (CLS) resistance in mung bean (Vigna radiata L. Wilczek). Trop Plant Pathol: https://doi.org/10.1007/s40858-022-00525-w. Accessed on: 10th August 2022d.

  • Sahoo JP, Samal KC, Lenka D et al (2023) Population genetic structure and marker-trait association studies for Cercospora leaf spot (CLS) resistance in mung bean (Vigna radiata (L.) Wilczek). Trop plant pathol. https://doi.org/10.1007/s40858-023-00565-w

    Article  Google Scholar 

  • Samal KC, Sahoo JP, Behera L, Dash T (2021) Understanding the BLAST (Basic local alignment search tool) Program and a step-by-step guide for its use in life science research. Bhartiya Krishi Anusandhan Patrika. 36:55–61

    Google Scholar 

  • Servin B, Martin OC, Mézard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics. 168(1):513–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192

    Article  PubMed  Google Scholar 

  • Singh BD, Singh AK (2015) Hybridization-based markers. Marker Assist Plant Breed Princ Pract. https://doi.org/10.1007/978-81-322-2316-0_2

    Article  Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen TH (2008) Genomic selection using different marker types and densities. J Anim Sci. 86(10):2447–54

    Article  CAS  PubMed  Google Scholar 

  • Sweeney DW, Sun J, Taagen E, Sorrells ME (2019) Genomic selection in wheat, In: Meidaner T, Korzun V (Eds.) Applications of genetics and genomic research in cereals, Woodhead publisher

  • van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A et al (2018) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci 282:23–39

    Article  PubMed  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? [Opinion and Comment]. Nat Biotechnol 30(12):1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang ZF, Xu CW (2015) A comparison of genomic selection methods for breeding value prediction. Sci Bull 60:925–935

    Article  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theoret Appl Genet 116:815–824

    Article  CAS  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theoret Appl Genet 129:653–673

    Article  CAS  Google Scholar 

  • Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2020) Enhancing genetic gain in the era of molecular breeding. J Exp Bot. 68(11):2641–2666

    Article  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1(1):100005

    Article  PubMed  Google Scholar 

  • Zhang XC, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multi-parental tropical maize population. G3 (Bethesda) 7:2315–2326

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Rabiya: drafting of manuscript, final referencing and editing; Swapnil: collection of supporting papers and written a part of manuscript; DZ: written a part of manuscript and helped in editing manuscript ; Mankesh: editing the manuscript; Monika: collection of papers; JP: Coordinates the process. All authors read and approve the final version of the manuscript.

Corresponding author

Correspondence to Jyoti Prakash Sahoo.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, R., Kumar, M., Swapnil et al. Understanding the genomic selection for crop improvement: current progress and future prospects. Mol Genet Genomics 298, 813–821 (2023). https://doi.org/10.1007/s00438-023-02026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02026-0

Keywords

Navigation