Skip to main content

Advertisement

Log in

Integrative analysis of lactylation-related genes and establishment of a novel prognostic signature for hepatocellular carcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Lactylation has been found to involve in regulating many types of biological process in cancers. However, research on lactylation-related genes in predicting the prognosis of hepatocellular carcinoma (HCC) remains limited.

Methods

The differential expression of lactylation-related genes (EP300 and HDAC1–3) in pan-cancer were examined in public databases. HCC patient tissues were obtained for mRNA expression and lactylation level detection by RT-qPCR and western blotting. Transwell migration assay, CCK-8 assay, EDU staining assay and RNA-seq were performed to verify the potential function and mechanisms in HCC cell lines after lactylation inhibitor apicidin treatment. lmmuCellAI, quantiSeq, xCell, TIMER and CIBERSOR were used to analyze the correlation between transcription levels of lactylation-related genes and immune cell infiltration in HCC. Risk model of lactylation-related genes was constructed by LASSO regression analysis, and prediction effect of the model was evaluated.

Result

The mRNA levels of lactylation-related genes and lactylation levels were higher in HCC tissues than normal samples. The lactylation levels, cell migration, and proliferation ability of HCC cell lines were suppressed after apicidin treatment. The dysregulation of EP300 and HDAC1–3 was associated with proportion of immune cell infiltration, especially B cell. Upregulation of HDAC1 and HDAC2 was closely associated with poorer prognosis. Finally, a novel risk model, based on HDAC1 and HDAC2, was developed for prognosis prediction in HCC.

Conclusion

HDAC1 and HDAC2 are expected to become new biomarkers for HCC. Risk scoring model based on HDAC1 and HDAC2 can be used to predict the prognosis of HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The original contributions presented in the study are included in the article.

References

  • Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  • Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6(6):579–589

    Article  CAS  PubMed Central  Google Scholar 

  • Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H, Wilkens L, Schlegelberger B, Kuhnel F, Skawran B (2012) Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 143(3):811-820.e815

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U et al (2022) UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25:18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AN, Luo Y, Yang YH, Fu JT, Geng XM, Shi JP, Yang J (2021) Lactylation, a novel metabolic reprogramming code: current status and prospects. Front Immunol 12:688910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM, Liu G (2021) Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol 64(1):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, Davidson B, Risberg B (2006) NK- and B cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol 125(3):451–458

    Article  PubMed  Google Scholar 

  • Faggioli F, Palagano E, Di Tommaso L, Donadon M, Marrella V, Recordati C, Mantero S, Villa A, Vezzoni P, Cassani B (2018) B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 67(5):1970–1985

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, Wilhelm J, Li S, Song J, Li W et al (2022) Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat Commun 13(1):4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, Loncova Z, Posch W, Wilflingseder D et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S et al (2022) Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep 40(3):111122

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Park S-H (2021) Advances in immune checkpoint inhibitors for hepatocellular carcinoma. J Liver Cancer 21(2):139–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, Sun L, Zhang Y, Zhang T, Li Z et al (2021) Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol 11:647559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juaid N, Amin A, Abdalla A, Reese K, Alamri Z, Moulay M, Abdu S, Miled N (2021) Anti-hepatocellular carcinoma biomolecules: molecular targets insights. Int J Mol Sci 22(19):10774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khajah MA, Khushaish S, Luqmani YA (2021) Lactate dehydrogenase A or B knockdown reduces lactate production and inhibits breast cancer cell motility in vitro. Front Pharmacol 12:747001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Luo RZ, Chen JW, Cao Y, Lu JB, He JH, Wu QL, Cai MY (2011) High expression of transcriptional coactivator p300 correlates with aggressive features and poor prognosis of hepatocellular carcinoma. J Transl Med 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther 7(1):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS (2021) Hepatocellular carcinoma. Nat Rev Dis Prim 7(1):6

    Article  PubMed  Google Scholar 

  • Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, Guo AY (2020) ImmuCellAI: a unique method for comprehensive T cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci (weinh) 7(7):1902880

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Yruela C, Zhang D, Wei W, Baek M, Liu W, Gao J, Dankova D, Nielsen AL, Bolding JE, Yang L et al (2022) Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. Sci Adv 8(3):eabi6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Li H, Chen J, Qian Q (2017) Lactic acid: no longer an inert and end-product of glycolysis. Physiology 32(6):453–463

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  • Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276(17):13505–13508

    Article  CAS  PubMed  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274

    Article  PubMed  Google Scholar 

  • Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q (2021) Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73:103627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hu H, Liu M, Zhou T, Cheng X, Huang W, Cao L (2022) The role and mechanism of histone lactylation in health and diseases. Front Genet 13:949252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Luo L, Zhao C, Li X, Wang Z, Zeng Z, Yang X, Zheng X, Jie H, Kang L et al (2022a) A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRbeta signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci 18(8):3470–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, Gill PS, Ha T, Liu L, Williams DL et al (2022b) Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ 29(1):133–146

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X et al (2023) Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab 5(1):61–79

    Article  CAS  PubMed  Google Scholar 

  • Ying M, You D, Zhu X, Cai L, Zeng S, Hu X (2021) Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol 46:102065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomizo C, Yamaguchi K, Itoh Y, Nishimura T, Umemura A, Minami M, Yasui K, Mitsuyoshi H, Fujii H, Tochiki N et al (2011) High expression of p300 in HCC predicts shortened overall survival in association with enhanced epithelial mesenchymal transition of HCC cells. Cancer Lett 310(2):140–147

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, Jia R (2021) Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 22(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574(7779):575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H et al (2022) Lactate: the mediator of metabolism and immunosuppression. Front Endocrinol (lausanne) 13:901495

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the national natural science foundation of China (Grant Numbers: 81672420, 81702406) and the Natural Science Foundation of Guangdong Province of China (2016A030310207).

Author information

Authors and Affiliations

Authors

Contributions

DC, XY and DQC collected data and analyzed data. DC and DQC wrote the manuscript. DC, XY, DQC, JW, AL, SY, WY, JD and WZ checked and amend manuscript. LP and JM designed the research.

Corresponding authors

Correspondence to Jun Min, Li Peng or Jinxing Wei.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval and consent to participate

Scheme of this research was approved by the Institutional Research Ethics Committee of the Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University (Guangzhou, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2415 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Yuan, X., Cai, D.Q. et al. Integrative analysis of lactylation-related genes and establishment of a novel prognostic signature for hepatocellular carcinoma. J Cancer Res Clin Oncol 149, 11517–11530 (2023). https://doi.org/10.1007/s00432-023-04947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04947-0

Keywords

Navigation