Skip to main content

Advertisement

Log in

Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mammalian expression systems, particularly the human embryonic kidney (HEK-293) cells, combined with electrophysiological studies, have greatly benefited our understanding of the function, characteristic, and regulation of various ion channels. It was previously assumed that the existence of endogenous ion channels in native HEK-293 cells could be negligible. Still, more and more ion channels are gradually reported in native HEK-293 cells, which should draw our attention. In this regard, we summarize the different ion channels that are endogenously expressed in HEK-293 cells, including voltage-gated Na+ channels, Ca2+ channels, K+ channels, Cl channels, nonselective cation channels, TRP channels, acid-sensitive ion channels, and Piezo channels, which may complicate the recording of the heterogeneously expressed ion channels to a certain degree. We noted that the expression patterns and channel profiles varied with different studies, which may be due to the distinct originality of the cells, cell culture conditions, passage numbers, and different recording protocols. Therefore, a better knowledge of endogenous ion channels may help minimize potential problems in characterizing heterologously expressed ion channels. Based on this, it is recommended that HEK-293 cells from unknown sources should be examined before transfection for the characterization of their functional profile, especially when the expression level of exogenous ion channels does not overwhelm the endogenous ion channels largely, or the current amplitude is not significantly higher than the native currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ackerman MJ, Clapham DE (1997) Ion channels–basic science and clinical disease. N Engl J Med 336:1575–1586

    Article  CAS  PubMed  Google Scholar 

  2. Aguiari G, Campanella M, Manzati E, Pinton P, Banzi M, Moretti S, Piva R, Rizzuto R, del Senno L (2003) Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells. Biochem Biophys Res Commun 301:657–664

    Article  CAS  PubMed  Google Scholar 

  3. Aldhous P (1991) Nobel Prize. Patch clamp brings honour. Nature 353:487

    Article  CAS  PubMed  Google Scholar 

  4. Alexander SP, Catterall WA, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C, Davies JA (2015) The concise guide to PHARMACOLOGY 2015/16: voltage-gated ion channels. Br J Pharmacol 172:5904–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almaca J, Tian Y, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amarouch MY, Syam N, Abriel H (2013) Biochemical, single-channel, whole-cell patch clamp, and pharmacological analyses of endogenous TRPM4 channels in HEK293 cells. Neurosci Lett 541:105–110

    Article  CAS  PubMed  Google Scholar 

  7. Ammala C, Moorhouse A, Ashcroft FM (1996) The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. J Physiol 494(Pt 3):709–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Avalos Prado P, Hafner S, Comoglio Y, Wdziekonski B, Duranton C, Attali B, Barhanin J, Sandoz G (2021) KCNE1 is an auxiliary subunit of two distinct ion channel superfamilies. Cell 184:534-544 e511

    Article  CAS  PubMed  Google Scholar 

  9. Avila G, Sandoval A, Felix R (2004) Intramembrane charge movement associated with endogenous K+ channel activity in HEK-293 cells. Cell Mol Neurobiol 24:317–330

    Article  CAS  PubMed  Google Scholar 

  10. Babes A, Sauer SK, Moparthi L, Kichko TI, Neacsu C, Namer B, Filipovic M, Zygmunt PM, Reeh PW, Fischer MJ (2016) Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1. J Neurosci 36:5264–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248–251

    Article  CAS  PubMed  Google Scholar 

  12. Berjukow S, Doring F, Froschmayr M, Grabner M, Glossmann H, Hering S (1996) Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br J Pharmacol 118:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bichet DG, Parent L, Sauve R (2003) Nobel Prize for chemistry 2003. Water channels and ionic channels. Med Sci (Paris) 19:1289–1290

    Article  Google Scholar 

  14. Borg CB, Braun N, Heusser SA, Bay Y, Weis D, Galleano I, Lund C, Tian W, Haugaard-Kedstrom LM, Bennett EP, Lynagh T, Stromgaard K, Andersen J, Pless SA (2020) Mechanism and site of action of big dynorphin on ASIC1a. Proc Natl Acad Sci U S A 117:7447–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bugaj V, Alexeenko V, Zubov A, Glushankova L, Nikolaev A, Wang Z, Kaznacheyeva E, Bezprozvanny I, Mozhayeva GN (2005) Functional properties of endogenous receptor- and store-operated calcium influx channels in HEK293 cells. J Biol Chem 280:16790–16797

    Article  CAS  PubMed  Google Scholar 

  16. Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D (1996) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: a patch-clamp study. J Neurosci 16:7880–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  CAS  PubMed  Google Scholar 

  18. Carattino MD, Montalbetti N (2020) Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 318:F531–F543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Centeio R, Ousingsawat J, Schreiber R, Kunzelmann K (2020) Ca(2+) dependence of volume-regulated VRAC/LRRC8 and TMEM16A Cl(-) channels. Front Cell Dev Biol 8:596879

    Article  PubMed  PubMed Central  Google Scholar 

  20. Claudio T (1992) Stable expression of heterologous multisubunit protein complexes established by calcium phosphate- or lipid-mediated cotransfection. Methods Enzymol 207:391–408

    Article  CAS  PubMed  Google Scholar 

  21. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    Article  CAS  PubMed  Google Scholar 

  24. Csanady L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the CFTR anion channel. Physiol Rev 99:707–738

    Article  CAS  PubMed  Google Scholar 

  25. Cummins TR, Zhou J, Sigworth FJ, Ukomadu C, Stephan M, Ptacek LJ, Agnew WS (1993) Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron 10:667–678

    Article  CAS  PubMed  Google Scholar 

  26. Curro D (2016) The modulation of potassium channels in the smooth muscle as a therapeutic strategy for disorders of the gastrointestinal tract. Adv Protein Chem Struct Biol 104:263–305

    Article  CAS  PubMed  Google Scholar 

  27. Davies PA, Hoffmann EB, Carlisle HJ, Tyndale RF, Hales TG (2000) The influence of an endogenous beta3 subunit on recombinant GABA(A) receptor assembly and pharmacology in WSS-1 cells and transiently transfected HEK293 cells. Neuropharmacology 39:611–620

    Article  CAS  PubMed  Google Scholar 

  28. Domingue JC, Ao M, Sarathy J, George A, Alrefai WA, Nelson DJ, Rao MC (2014) HEK-293 cells expressing the cystic fibrosis transmembrane conductance regulator (CFTR): a model for studying regulation of Cl- transport. Physiol Rep 2

  29. Dubin AE, Murthy S, Lewis AH, Brosse L, Cahalan SM, Grandl J, Coste B, Patapoutian A (2017) Endogenous Piezo1 can confound mechanically activated channel identification and characterization. Neuron 94:266-270 e263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dulin NO (2020) Calcium-activated chloride channel ANO1/TMEM16A: regulation of expression and signaling. Front Physiol 11:590262

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dworakowska B, Dolowy K (2000) Ion channels-related diseases. Acta Biochim Pol 47:685–703

    Article  CAS  PubMed  Google Scholar 

  32. Fedida D (1997) Gating charge and ionic currents associated with quinidine block of human Kv1.5 delayed rectifier channels. J Physiol 499(Pt 3):661–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fedida D, Bouchard R, Chen FS (1996) Slow gating charge immobilization in the human potassium channel Kv1.5 and its prevention by 4-aminopyridine. J Physiol 494(Pt 2):377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischmeister R, Hartzell HC (2005) Volume sensitivity of the bestrophin family of chloride channels. J Physiol 562:477–491

    Article  CAS  PubMed  Google Scholar 

  35. Freeman LC, Kass RS (1993) Expression of a minimal K+ channel protein in mammalian cells and immunolocalization in guinea pig heart. Circ Res 73:968–973

    Article  CAS  PubMed  Google Scholar 

  36. Fricke TC, Echtermeyer F, Zielke J, de la Roche J, Filipovic MR, Claverol S, Herzog C, Tominaga M, Pumroy RA, Moiseenkova-Bell VY, Zygmunt PM, Leffler A, Eberhardt MJ (2019) Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc Natl Acad Sci U S A 116:24359–24365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuchs K, Zezula J, Slany A, Sieghart W (1995) Endogenous [3H]flunitrazepam binding in human embryonic kidney cell line 293. Eur J Pharmacol 289:87–95

    Article  CAS  PubMed  Google Scholar 

  38. Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F (2002) IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch 443:625–634

    Article  CAS  PubMed  Google Scholar 

  39. Gao J, Cui W, Sheng Y, Ruan J, Kurgan L (2016) PSIONplus: accurate sequence-based predictor of ion channels and their types. PLoS ONE 11:e0152964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gao J, Miao Z, Zhang Z, Wei H, Kurgan L (2019) Prediction of ion channels and their types from protein sequences: comprehensive review and comparative assessment. Curr Drug Targets 20:579–592

    Article  CAS  PubMed  Google Scholar 

  41. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  CAS  PubMed  Google Scholar 

  42. Gunthorpe MJ, Smith GD, Davis JB, Randall AD (2001) Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch 442:668–674

    Article  CAS  PubMed  Google Scholar 

  43. Hamann M, Gibson A, Davies N, Jowett A, Walhin JP, Partington L, Affleck K, Trezise D, Main M (2009) Human ClCa1 modulates anionic conduction of calcium-dependent chloride currents. J Physiol 587:2255–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth MD, Cairns W, Harrison DC, Clarke CE, Ellington K, Prinjha RK, Barton AJL, Medhurst AD, Smith GD, Topp S, Murdock P, Sanger GJ, Terrett J, Jenkins O, Benham CD, Randall AD, Gloger IS, Davis JB (2000) Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 88:205–215

    Article  CAS  PubMed  Google Scholar 

  45. He B, Soderlund DM (2010) Human embryonic kidney (HEK293) cells express endogenous voltage-gated sodium currents and Na v 1.7 sodium channels. Neurosci Lett 469:268–272

    Article  CAS  PubMed  Google Scholar 

  46. He B, Soderlund DM (2011) Differential state-dependent modification of rat Na(v)1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin. Toxicol Appl Pharmacol 257:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He B, Soderlund DM (2016) Effects of the beta1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin. Toxicol Appl Pharmacol 291:58–69

    Article  CAS  PubMed  Google Scholar 

  48. Jaim Etcheverry G (2021) Touch, an enigmatic sense. Nobel Prize in Physiology or Medicine 2021. Medicina (B Aires) 81:1083–1085

    Google Scholar 

  49. Jentsch TJ, Pusch M (2018) CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev 98:1493–1590

    Article  CAS  PubMed  Google Scholar 

  50. Jiang B, Sun X, Cao K, Wang R (2002) Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79

    Article  CAS  PubMed  Google Scholar 

  51. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    Article  CAS  PubMed  Google Scholar 

  52. Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109:6745–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14:1084–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83:1–24

    Article  CAS  PubMed  Google Scholar 

  55. Kohr G, Seeburg PH (1996) Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol 492(Pt 2):445–452

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kolesnikov D, Perevoznikova A, Gusev K, Glushankova L, Kaznacheyeva E, Shalygin A (2021) Electrophysiological properties of endogenous single Ca(2+) activated Cl(-) channels induced by local Ca(2+) entry in HEK293. Int J Mol Sci 22

  57. Kurczynska M, Konopka BM, Kotulska M (2017) Role of bioinformatics in the study of ionic channels. Adv Anat Embryol Cell Biol 227:17–37

    Article  PubMed  Google Scholar 

  58. Kurejova M, Uhrik B, Sulova Z, Sedlakova B, Krizanova O, Lacinova L (2007) Changes in ultrastructure and endogenous ionic channels activity during culture of HEK 293 cell line. Eur J Pharmacol 567:10–18

    Article  CAS  PubMed  Google Scholar 

  59. Kutzner C, Kopfer DA, Machtens JP, de Groot BL, Song C, Zachariae U (2016) Insights into the function of ion channels by computational electrophysiology simulations. Biochim Biophys Acta 1858:1741–1752

    Article  CAS  PubMed  Google Scholar 

  60. Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678

    Article  CAS  PubMed  Google Scholar 

  61. Kweon HJ, Suh BC (2013) Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 46:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lagrange AH, Hu N, Macdonald RL (2018) GABA beyond the synapse: defining the subtype-specific pharmacodynamics of non-synaptic GABAA receptors. J Physiol 596:4475–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  64. Li J, Long Y, Qi GN, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26:3387–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104:4682–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin YF (2021) Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 15:408–423

    Article  Google Scholar 

  67. Liu Y, Zhang H, Men H, Du Y, Xiao Z, Zhang F, Huang D, Du X, Gamper N (2019) Volume-regulated Cl(-) current: contributions of distinct Cl(-) channels and localized Ca(2+) signals. Am J Physiol Cell Physiol 317:C466–C480

    Article  CAS  PubMed  Google Scholar 

  68. Liu YQ, Huang WX, Sanchez RM, Min JW, Hu JJ, He XH, Peng BW (2014) Regulation of Kv4.2 A-type potassium channels in HEK-293 cells by hypoxia. Front Cell Neurosci 8:329

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6:8329

    Article  CAS  PubMed  Google Scholar 

  70. Ma X, Du J, Zhang P, Deng J, Liu J, Lam FF, Li RA, Huang Y, Jin J, Yao X (2013) Functional role of TRPV4-KCa2.3 signaling in vascular endothelial cells in normal and streptozotocin-induced diabetic rats. Hypertension 62:134–139

    Article  PubMed  CAS  Google Scholar 

  71. Malin SA, Guo WX, Jafari G, Goate AM, Nerbonne JM (1998) Presenilins upregulate functional K+ channel currents in mammalian cells. Neurobiol Dis 4:398–409

    Article  CAS  PubMed  Google Scholar 

  72. Mei Y, Barrett JE, Hu H (2018) Calcium release-activated calcium channels and pain. Cell Calcium 74:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendez F, Penner R (1998) Near-visible ultraviolet light induces a novel ubiquitous calcium-permeable cation current in mammalian cell lines. J Physiol 507(Pt 2):365–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitrovic N, George AL Jr, Heine R, Wagner S, Pika U, Hartlaub U, Zhou M, Lerche H, Fahlke C, Lehmann-Horn F (1994) K(+)-aggravated myotonia: destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J Physiol 478(Pt 3):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moran O, Nizzari M, Conti F (1999) Myopathic mutations affect differently the inactivation of the two gating modes of sodium channels. J Bioenerg Biomembr 31:591–608

    Article  CAS  PubMed  Google Scholar 

  76. Moran O, Nizzari M, Conti F (2000) Endogenous expression of the beta1A sodium channel subunit in HEK-293 cells. FEBS Lett 473:132–134

    Article  CAS  PubMed  Google Scholar 

  77. Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98:466–481

    Article  CAS  PubMed  Google Scholar 

  78. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  79. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  CAS  PubMed  Google Scholar 

  80. Ooi A, Lemtiri-Chlieh F, Wong A, Gehring C (2017) Direct modulation of the guard cell outward-rectifying potassium channel (GORK) by abscisic acid. Mol Plant 10:1469–1472

    Article  CAS  PubMed  Google Scholar 

  81. Ooi A, Wong A, Esau L, Lemtiri-Chlieh F, Gehring C (2016) A guide to transient expression of membrane proteins in HEK-293 cells for functional characterization. Front Physiol 7:300

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pantke S, Fricke TC, Eberhardt MJ, Herzog C, Leffler A (2021) Gating of the capsaicin receptor TRPV1 by UVA-light and oxidants are mediated by distinct mechanisms. Cell Calcium 96:102391

    Article  CAS  PubMed  Google Scholar 

  83. Pelucchi B, Aguiari G, Pignatelli A, Manzati E, Witzgall R, Del Senno L, Belluzzi O (2006) Nonspecific cation current associated with native polycystin-2 in HEK-293 cells. J Am Soc Nephrol 17:388–397

    Article  CAS  PubMed  Google Scholar 

  84. Perez-Garcia MT, Kamp TJ, Marban E (1995) Functional properties of cardiac L-type calcium channels transiently expressed in HEK293 cells. Roles of alpha 1 and beta subunits. J Gen Physiol 105:289–305

    Article  CAS  PubMed  Google Scholar 

  85. Peters CH, Ruben PC (2014) Introduction to sodium channels. Handb Exp Pharmacol 221:1–6

    Article  CAS  PubMed  Google Scholar 

  86. Petersen KR, Nerbonne JM (1999) Expression environment determines K+ current properties: Kv1 and Kv4 alpha-subunit-induced K+ currents in mammalian cell lines and cardiac myocytes. Pflugers Arch 437:381–392

    Article  CAS  PubMed  Google Scholar 

  87. Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ (2015) Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 34:2993–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ponce A, Castillo A, Hinojosa L, Martinez-Rendon J, Cereijido M (2018) The expression of endogenous voltage-gated potassium channels in HEK293 cells is affected by culture conditions. Physiol Rep 6:e13663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pritchett DB, Sontheimer H, Gorman CM, Kettenmann H, Seeburg PH, Schofield PR (1988) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242:1306–1308

    Article  CAS  PubMed  Google Scholar 

  90. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Restrepo-Angulo I, De Vizcaya-Ruiz A, Camacho J (2010) Ion channels in toxicology. J Appl Toxicol 30:497–512

    Article  CAS  PubMed  Google Scholar 

  92. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104

    Article  CAS  PubMed  Google Scholar 

  93. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    Article  CAS  PubMed  Google Scholar 

  94. Savio-Galimberti E, Gollob MH, Darbar D (2012) Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol 3:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sforna L, Michelucci A, Morena F, Argentati C, Franciolini F, Vassalli M, Martino S, Catacuzzeno L (2022) Piezo1 controls cell volume and migration by modulating swelling-activated chloride current through Ca(2+) influx. J Cell Physiol 237:1857–1870

    Article  CAS  PubMed  Google Scholar 

  97. Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    Article  CAS  PubMed  Google Scholar 

  98. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45

    Article  CAS  PubMed  Google Scholar 

  99. Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260:1133–1136

    Article  CAS  PubMed  Google Scholar 

  100. Strange K, Yamada T, Denton JS (2019) A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J Gen Physiol 151:100–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stuhlmann T, Planells-Cases R, Jentsch TJ (2018) LRRC8/VRAC anion channels enhance beta-cell glucose sensing and insulin secretion. Nat Commun 9:1974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Sun Q, Sever P (2020) Amiloride: a review. J Renin Angiotensin Aldosterone Syst 21:1470320320975893

    PubMed  PubMed Central  Google Scholar 

  103. Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    Article  CAS  PubMed  Google Scholar 

  105. Tan J, Soderlund DM (2009) Human and rat Nav1.3 voltage-gated sodium channels differ in inactivation properties and sensitivity to the pyrethroid insecticide tefluthrin. Neurotoxicology 30:81–89

    Article  CAS  PubMed  Google Scholar 

  106. Taylor PM, Thomas P, Gorrie GH, Connolly CN, Smart TG, Moss SJ (1999) Identification of amino acid residues within GABA(A) receptor beta subunits that mediate both homomeric and heteromeric receptor expression. J Neurosci 19:6360–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200

    Article  CAS  PubMed  Google Scholar 

  108. Tsagareli MG, Nozadze I (2020) An overview on transient receptor potential channels superfamily. Behav Pharmacol 31:413–434

    Article  PubMed  Google Scholar 

  109. Ueno S, Zorumski C, Bracamontes J, Steinbach JH (1996) Endogenous subunits can cause ambiguities in the pharmacology of exogenous gamma-aminobutyric acidA receptors expressed in human embryonic kidney 293 cells. Mol Pharmacol 50:931–938

    CAS  PubMed  Google Scholar 

  110. Ukomadu C, Zhou J, Sigworth FJ, Agnew WS (1992) muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron 8:663–676

    Article  CAS  PubMed  Google Scholar 

  111. Ullrich F, Blin S, Lazarow K, Daubitz T, von Kries JP, Jentsch TJ (2019) Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. Elife 8

  112. Varghese A, Tenbroek EM, Coles J Jr, Sigg DC (2006) Endogenous channels in HEK cells and potential roles in HCN ionic current measurements. Prog Biophys Mol Biol 90:26–37

    Article  CAS  PubMed  Google Scholar 

  113. Vasquez C, Navarro-Polanco RA, Huerta M, Trujillo X, Andrade F, Trujillo-Hernandez B, Hernandez L (2003) Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells. Can J Physiol Pharmacol 81:436–442

    Article  CAS  PubMed  Google Scholar 

  114. Vetter I, Lewis RJ (2010) Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 79:908–920

    Article  CAS  PubMed  Google Scholar 

  115. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  116. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  117. Wang HY, Shimizu T, Numata T, Okada Y (2007) Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch 454:223–233

    Article  CAS  PubMed  Google Scholar 

  118. Wang W, O’Connell B, Dykeman R, Sakai T, Delporte C, Swaim W, Zhu X, Birnbaumer L, Ambudkar IS (1999) Cloning of Trp1beta isoform from rat brain: immunodetection and localization of the endogenous Trp1 protein. Am J Physiol 276:C969-979

    Article  CAS  PubMed  Google Scholar 

  119. Wooltorton JR, Moss SJ, Smart TG (1997) Pharmacological and physiological characterization of murine homomeric beta3 GABA(A) receptors. Eur J Neurosci 9:2225–2235

    Article  CAS  PubMed  Google Scholar 

  120. Wu SN, Wu YH, Chen BS, Lo YC, Liu YC (2009) Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons. Toxicology 258:70–77

    Article  CAS  PubMed  Google Scholar 

  121. Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca(2+) entry in HEK-293 cells. Am J Physiol Cell Physiol 278:C526-536

    Article  CAS  PubMed  Google Scholar 

  122. Wu X, Babnigg G, Zagranichnaya T, Villereal ML (2002) The role of endogenous human Trp4 in regulating carbachol-induced calcium oscillations in HEK-293 cells. J Biol Chem 277:13597–13608

    Article  CAS  PubMed  Google Scholar 

  123. Yamashita T, Horio Y, Yamada M, Takahashi N, Kondo C, Kurachi Y (1996) Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J Physiol 493(Pt 1):143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang J, Chen J, Del Carmen VM, Osei-Owusu J, Chu J, Yu H, Sun S, Qiu Z (2019) PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science 364:395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY, Blanar MA (1997) KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci U S A 94:4017–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  CAS  PubMed  Google Scholar 

  127. Ye C, Rogers K, Bai M, Quinn SJ, Brown EM, Vassilev PM (1996) Agonists of the Ca(2+)-sensing receptor (CaR) activate nonselective cation channels in HEK293 cells stably transfected with the human CaR. Biochem Biophys Res Commun 226:572–579

    Article  CAS  PubMed  Google Scholar 

  128. Yu SP, Kerchner GA (1998) Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J Neurosci Res 52:612–617

    Article  CAS  PubMed  Google Scholar 

  129. Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280:29559–29569

    Article  CAS  PubMed  Google Scholar 

  130. Zhang Y, Zhang X, Liu C, Hu C (2021) Regulation of K(+) conductance by a hydrogen bond in Kv2.1, Kv2.2, and Kv1.2 channels. Membranes (Basel) 11

  131. Zhou JY, Potts JF, Trimmer JS, Agnew WS, Sigworth FJ (1991) Multiple gating modes and the effect of modulating factors on the microI sodium channel. Neuron 7:775–785

    Article  CAS  PubMed  Google Scholar 

  132. Zhu G, Zhang Y, Xu H, Jiang C (1998) Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line. J Neurosci Methods 81:73–83

    Article  CAS  PubMed  Google Scholar 

  133. Zong X, Schreieck J, Mehrke G, Welling A, Schuster A, Bosse E, Flockerzi V, Hofmann F (1995) On the regulation of the expressed L-type calcium channel by cAMP-dependent phosphorylation. Pflugers Arch 430:340–347

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was generously supported by grant from the National Natural Science Foundation of Heilongjiang Province of China (QC2018094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yuan, H., Yao, X. et al. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch - Eur J Physiol 474, 665–680 (2022). https://doi.org/10.1007/s00424-022-02700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02700-z

Keywords

Navigation