Skip to main content
Log in

Virtual reality with three-dimensional image guidance of individual patients’ vessel anatomy in laparoscopic distal pancreatectomy

  • How-I-Do-It articles
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Three-dimensional virtual endoscopy (3DVE) has the potential advantage of enhanced anatomic delineation and spatial orientation during laparoscopic procedures. In the present study, we aimed to evaluate the impact of 3DVE guidance in laparoscopic distal pancreatectomy (LDP).

Methods

Thirty-eight patients presenting to our hospital with a variety of pancreatic tumors underwent preoperative computed tomography scanning to clearly define the major peripancreatic vasculature and correlate it with a 3DVE system (SYNAPSE VINCENT: Fujifilm Medical, Tokyo, Japan). This map served as the guide during preoperative planning, surgical education, and simulation and as intraoperative navigation reference for LDP. Operative records and pathological findings were analyzed for each procedure. Operative parameters were compared between the 38 patients in this study and 8 patients performed without 3DVE guidance at our institution.

Results

The 3DVE navigation system successfully created a preoperative resection map in all patients. Relevant peripancreatic vasculature displayed on the system was identified and compared during the intervention. The mean blood loss in LDP performed under 3DVE guidance versus LDP without 3DVE was 168.5 +/- 347.6 g versus 330.0 +/- 211.4 g, p = 0.008 while and the operative time was 171.9 +/- 51.7 min versus 240.6 +/- 24.8 min, p = 0.001.

Conclusions

3DVE in conjunction with a “laparoscopic eye” creates a preoperative and intraoperative three-dimensional data platform that potentially enhances the accuracy and safety of LDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abu Hilal M, Takhar AS (2013) Laparoscopic left pancreatectomy: current concepts. Pancreatology 13:443–448. https://doi.org/10.1016/j.pan.2013.04.196

    Article  PubMed  Google Scholar 

  2. Jayaraman S, Gonen M, Brennan MF et al (2010) Laparoscopic distal pancreatectomy: evolution of a technique at a single institution. J Am Coll Surg 211:503–509. https://doi.org/10.1016/j.jamcollsurg.2010.06.010

    Article  PubMed  Google Scholar 

  3. Ziegler KM, Nakeeb A, Pitt HA et al (2010) Pancreatic surgery: evolution at a high-volume center. Surgery 148:702–709. https://doi.org/10.1016/j.surg.2010.07.029

    Article  PubMed  Google Scholar 

  4. Asbun HJ, Moekotte AL, Vissers FL et al (2020) The Miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg :271:1-14. https://doi.org/10.1097/sla.0000000000003590

  5. Moekotte AL, Rawashdeh A, Asbun HJ et al (2019) Safe implementation of minimally invasive pancreas resection: a systematic review. HPB (Oxford) 10(19):33198–33193. https://doi.org/10.1016/j.hpb.2019.11.005

    Article  Google Scholar 

  6. Abe Y, Itano O, Kitago M et al (2014) Computer assisted surgery, preoperative planning and navigation for pancreatic cancer. J Hepatobiliary Pancreat Sci 21:251–255. https://doi.org/10.1002/jhbp.84

    Article  PubMed  Google Scholar 

  7. Mise Y, Tani K, Aoki T et al (2013) Virtual liver resection: computer-assisted operation planning using a three-dimensional liver representation. J hepatobiliary Pancret Sci 20:157–164. https://doi.org/10.1007/s00534-012-0574-y

    Article  Google Scholar 

  8. Ohshima S (2014) Volume analyzer SYNAPSE VINCENT for liver analysis. J Hepatobiliary Pancret Sci 21:235–238. https://doi.org/10.1002/jhbp.81

    Article  Google Scholar 

  9. Bassi C, Marchegiani G, Dervenis C et al (2017) The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula:11 years after. Surgery 161:584–591. https://doi.org/10.1016/j.surg.2016.11.014

    Article  PubMed  Google Scholar 

  10. Fox AM, Pitzul K, Bhojani F et al (2012) Comparison of outcomes and costs between laparoscopic distal pancreatectomy and open resection at a single center. Surg Endosc 26:1220–1230. https://doi.org/10.1007/s00464-011-2061-y

    Article  PubMed  Google Scholar 

  11. Jin T, Altaf K, Xiong JJ et al (2012) A systematic review and meta-analysis of studies comparing laparoscopic and open distal pancreatectomy. HPB (Oxford) 14:711–724. https://doi.org/10.1111/j.1477-2574.2012.00531.x

    Article  Google Scholar 

  12. Ricci C, Casadei R, Taffurelli G et al (2015) Laparoscopic distal pancreatectomy in benign or premalignant pancreatic lesions: is it really more cost-effective than open approach? J Gastrointest Surg 19:1415–1424. https://doi.org/10.1007/s11605-015-2841-0

    Article  PubMed  Google Scholar 

  13. Lamadé W, Vetter M, Hassenpflug P et al (2002) Navigation and image-guided HBP surgery: a review and preview. J Hepato-Biliary-Pancreat Surg 9:592–599. https://doi.org/10.1007/s005340200079

    Article  Google Scholar 

  14. de Rooij T, Sitarz R, Busch OR et al (2015, 2015) Technical aspects of laparoscopic distal pancreatectomy for benign and malignant disease: review of the literature. Gastroenterol Res Pract:472906. https://doi.org/10.1155/2015/472906

  15. Nassour I, Wang SC, Porembka MR et al (2017) Conversion of minimally invasive distal pancreatectomy: predictors and outcomes. Ann Surg Oncol 24:3725–3731

    Article  PubMed  Google Scholar 

  16. Izumo W, Higuchi R, Yazawa T et al (2019) Evaluation of preoperative risk factors for postpancreatectomy hemorrhage. Langenbeck's Arch Surg 404:967–974. https://doi.org/10.1007/s00423-019-01830-w

    Article  Google Scholar 

  17. Aoki T, Murakami M, Koizumi T et al (2015) Three-dimensional virtual endoscopy for laparoscopic and thoracoscopic liver resection. J Am Coll Surg 221:e21–e26. https://doi.org/10.1016/j.jamcollsurg.2015.04.012

    Article  PubMed  Google Scholar 

  18. Aoki T, Murakami M, Fujimori A et al (2016) Routes for virtually guided endoscopic liver resection of subdiaphragmatic liver tumors. Langenbeck's Arch Surg 401:263–273. https://doi.org/10.1007/s00423-016-1385-4

    Article  Google Scholar 

  19. Egorov VI, Yashina NI, Fedorov AV et al (2010) Celiaco-mesenterial arterial aberrations in patients undergoing extended pancreatic resections: correlation of CT angiography with findings at surgery. JOP 11:348–357

    PubMed  Google Scholar 

  20. Fernández-Cruz L, Orduña D, Cesar-Borges G et al (2005) Distal pancreatectomy: en-bloc splenectomy vs spleen-preserving pancreatectomy. HPB (Oxford) 7:93–98. https://doi.org/10.1080/13651820510028972

    Article  Google Scholar 

  21. Sylvester PA, Stewart R, Ellis H et al (1995) Tortuosity of the human splenic artery. Clin Anat 8:214–218. https://doi.org/10.1002/ca.980080306

    Article  CAS  PubMed  Google Scholar 

  22. Inoko K, Ebihara Y, Sakamoto K et al (2015) Strategic approach to the splenic artery in laparoscopic spleen-preserving distal pancreatectomy. Surg Laparosc Endosc Percutan Tech 25:e122–e125. https://doi.org/10.1097/SLE.0000000000000182

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fasel JH, Muster M, Gailloud P et al (1996) Duplicated hepatic artery: radiologic and surgical implications. Acta Anat (Basel) 157:164–168. https://doi.org/10.1159/000147878

    Article  CAS  Google Scholar 

  24. Furukawa H, Shimada K, Iwata R et al (2000) A replaced common hepatic artery running through the pancreatic parenchyma. Surgery 127:711–712. https://doi.org/10.1067/msy.2000.104485

    Article  CAS  PubMed  Google Scholar 

  25. Perwaiz A, Singh A, Singh T et al (2010) Incidence and management of arterial anomalies in patients undergoing pancreaticoduodenectomy. JOP 11:25–30

    PubMed  Google Scholar 

  26. Redman HC, Reuter SR (1969) Angiographic demonstration of surgically important vascular variations. Surg Gynecol Obstet 129:33–39

    CAS  PubMed  Google Scholar 

  27. Thomas PG, Baer HU, Matthews JB et al (1990) Post-operative hepatic necrosis due to reduction in hepatic arterial blood flow during surgery for chronic biliary obstruction. Dig Surg 7:31–35

    Article  Google Scholar 

  28. Yamamoto S, Kubota K, Rokkaku K et al (2005) Disposal of replaced common hepatic artery coursing within the pancreas during pancreatoduodenectomy: report of a case. Surg Today 35:984–987. https://doi.org/10.1007/s00595-005-3040-5

    Article  PubMed  Google Scholar 

  29. Yang SH, Yin YH, Jang JY et al (2007) Assessment of hepatic arterial anatomy in keeping with preservation of the vasculature while performing pancreatoduodenectomy: an opinion. World J Surg 31:2384–2391. https://doi.org/10.1007/s00268-007-9246-5

    Article  PubMed  Google Scholar 

  30. Yang F, Long J, Fu DL et al (2008) Aberrant hepatic artery in patients undergoing pancreaticoduodenectomy. Pancreatology 8:50–54. https://doi.org/10.1159/000114867

    Article  CAS  PubMed  Google Scholar 

  31. Sahakyan MA, Kleive D, Kazaryan AM et al (2018) Extended laparoscopic distal pancreatectomy for adenocarcinoma in the body and tail of the pancreas: a single-center experience. Langenbeck's Arch Surg 403:941–948

    Article  Google Scholar 

  32. Yoshitomi H, Sakai N, Kagawa S et al (2019) Feasibility and safety of distal pancreatectomy with en bloc celiac axis resection (DP-CAR) combined with neoadjuvant therapy for borderline resectable and unresectable pancreatic body/tail cancer. Langenbeck's Arch Surg 6:704–708

    Google Scholar 

  33. van Hilst J, de Rooij T, Bosscha K et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4:199–207

    Article  PubMed  Google Scholar 

  34. Diana M, Soler L, Agnus V et al (2017) Prospective evaluation of precision multimodal gallbladder surgery navigation: virtual reality, near-infrared fluorescence, and X-ray-based intraoperative cholangiography. Ann Surg 266:890–897

    Article  PubMed  Google Scholar 

  35. Kenngott HG, Wagner M, Gondan M et al (2014) Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc 28:922–940. https://doi.org/10.1007/s00464-013-3249-0

    Article  Google Scholar 

  36. Fabian S, Spinczyk D (2018) Target registration error minimization for minimally invasive interventions involving deformable organs. Comput Med Imaging Graph 65:4–10. https://doi.org/10.1016/j.compmedimag.2017.01.008

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Takeshi Aoki participated in study conception and design. Tomotake Koizumi, Doaa A. Mansour, Akira Fujimori, Tomokazu Kusano, Kazuhiro Matsuda, Koji Nogaki, Yoshihiko Tashiro, Tomoki Hakozaki, Yusuke Wada, Hideki Shibata, Kodai Tomioka, Takahito Hirai, Tatsuya Yamazaki, Kazuhiko Saito, Yuta Enami, Reiko Koike, Keitaro Mitamura, Kosuke Yamada, Makoto Watanabe, and Koji Otsuka participated in the acquisition of data. Tomotake Koizumi, Doaa A. Mansour, Akira Fujimori, Tomokazu Kusano, Kazuhiro Matsuda, Koji Nogaki, Yoshihiko Tashiro, Tomoki Hakozaki, Yusuke Wada, Hideki Shibata, Kodai Tomioka, Takahito Hirai, Tatsuya Yamazaki, Kazuhiko Saito, Yuta Enami, Reiko Koike, Keitaro Mitamura, Kosuke Yamada, Makoto Watanabe, and Koji Otsuka participated in analysis and interpretation of data. Takeshi Aoki, Tomotake Koizumi, Doaa A. Mansour, and Masahiko Murakami participated in drafting of the manuscript. Takeshi Aoki, Tomotake Koizumi, Doaa A. Mansour, and Masahiko Murakami participated in critical revision of the manuscript.

Corresponding author

Correspondence to Takeshi Aoki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. (Statement of approval of IRB: Showa University Ethics Committee. Notice of approval of IRB protocol numbers, 2945).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Deposit data cite

Takeshi Aoki, Three-dimensional virtual endoscopy guidance allows safe and accurate laparoscopic distal pancreatectomy, figshare, DOI: 10.6084/m9.figshare.11787366

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(MOV 267 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, T., Koizumi, T., Mansour, D.A. et al. Virtual reality with three-dimensional image guidance of individual patients’ vessel anatomy in laparoscopic distal pancreatectomy. Langenbecks Arch Surg 405, 381–389 (2020). https://doi.org/10.1007/s00423-020-01871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-020-01871-6

Keywords

Navigation