Skip to main content

Advertisement

Log in

Cytokine analysis of aqueous humor in patients with cytomegalovirus corneal endotheliitis

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate cytokine levels of aqueous humor in patients with cytomegalovirus (CMV) corneal endotheliitis and their relationships with CMV DNA load.

Methods

44 aqueous humor samples were obtained from 26 patients with CMV corneal endotheliitis at various stages of treatment. 33 samples obtained from cataract patients during the same period were selected as a control group. Each sample was used to measure the concentration of the CMV DNA load using real-time quantitative polymerase chain reaction, and to examine the levels of IL-6, IL-8, IL-10, MCP-1, VCAM-1, VEGF, IP-10, G-CSF, ICAM-1 and IFN-γ using a cytometric bead array.

Results

All 10 cytokines were found to have statistically significant differences between the CMV endotheliitis and cataract groups. The Spearman correlation test showed that the concentration of CMV DNA load was significantly associated with the levels of IL-6 (P = 0.005, r = 0.417), IL-8 (P < 0.001, r = 0.514), IL-10 (P < 0.001, r = 0.700), MCP-1 (P = 0.001, r = 0.487), VEGF (P < 0.001, r = 0.690), IP-10 (P = 0.001, r = 0.469), G-CSF (P < 0.001, r = 0.554) and ICAM-1 (P < 0.001, r = 0.635), but not significantly associated with VCAM-1 (P = 0.056) and IFN-γ (P = 0.219).

Conclusions

There was a combined innate and adaptive immune response in aqueous humor in patients with CMV endotheliitis. Levels of multiple cytokines were significantly correlated with viral particle. Cytokines are potential indicators to help diagnose CMV endotheliitis, evaluate disease activity and assess treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yokogawa H, Kobayashi A, Takemoto Y, Mori N, Wajima R, Nishino T, Sugiyama K (2021) Development of cytomegalovirus corneal endotheliitis during long-term topical tacrolimus and steroid treatment for chronic ocular surface inflammatory diseases. Cornea 40:1491–1497. https://doi.org/10.1097/ICO.0000000000002674

    Article  PubMed  Google Scholar 

  2. da Costa Paula CA, Gore DM, Shah K, Kuit G, Angunawela RI, Barnett JP, Tuft SJ (2019) Cytomegalovirus infection is not a major cause of corneal graft failure in the United Kingdom. Eye (Lond) 33:833–837. https://doi.org/10.1038/s41433-018-0331-9

    Article  PubMed  Google Scholar 

  3. Miyazaki D, Shimizu D, Shimizu Y, Inoue Y, Inoue T, Higaki S, Ueta M, Sugita S (2018) Diagnostic efficacy of real-time PCR for ocular cytomegalovirus infections. Graefes Arch Clin Exp Ophthalmol 256:2413–2420. https://doi.org/10.1007/s00417-018-4111-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu T, Peng RM, Xiao GG, Feng LN, Hong J (2020) Clinical evaluation of intravitreal injection of ganciclovir in refractory corneal endotheliitis. Ocul Immunol Inflamm 28:270–280. https://doi.org/10.1080/09273948.2019.1573261

    Article  CAS  PubMed  Google Scholar 

  5. Koizumi N, Yamasaki K, Kawasaki S, Sotozono C, Inatomi T, Mochida C, Kinoshita S (2006) Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis. Am J Ophthalmol 141:564–565. https://doi.org/10.1016/j.ajo.2005.09.021

    Article  PubMed  Google Scholar 

  6. Chee SP, Bacsal K, Jap A, Se-Thoe SY, Cheng CL, Tan BH (2007) Corneal endotheliitis associated with evidence of cytomegalovirus infection. Ophthalmology 114:798–803. https://doi.org/10.1016/j.ophtha.2006.07.057

    Article  PubMed  Google Scholar 

  7. Carmichael A (2012) Cytomegalovirus and the eye. Eye (Lond) 26:237–240. https://doi.org/10.1038/eye.2011.327

    Article  CAS  PubMed  Google Scholar 

  8. Chee SP, Jap A (2012) Treatment outcome and risk factors for visual loss in Cytomegalovirus endotheliitis. Graefes Arch Clin Exp Ophthalmol 250:383–389. https://doi.org/10.1007/s00417-011-1813-7

    Article  CAS  PubMed  Google Scholar 

  9. Moshirfar M, Murri MS, Shah TJ, Skanchy DF, Tuckfield JQ, Ronquillo YC, Birdsong OC, Hofstedt D, Hoopes PC (2019) A review of corneal endotheliitis and endotheliopathy: differential diagnosis, evaluation, and treatment. Ophthalmol Ther 8:195–213. https://doi.org/10.1007/s40123-019-0169-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yokogawa H, Kobayashi A, Sugiyama K (2013) Mapping owl’s eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy. Jpn J Ophthalmol 57:80–84. https://doi.org/10.1007/s10384-012-0189-5

    Article  PubMed  Google Scholar 

  11. Shiraishi A, Hara Y, Takahashi M, Oka N, Yamaguchi M, Suzuki T, Uno T, Ohashi Y (2007) Demonstration of “owl’s eye” morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am J Ophthalmol 143:715–717. https://doi.org/10.1016/j.ajo.2006.11.026

    Article  PubMed  Google Scholar 

  12. Kobayashi A, Yokogawa H, Higashide T, Nitta K, Sugiyama K (2012) Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis. Am J Ophthalmol 153:445–453. https://doi.org/10.1016/j.ajo.2011.07.026

    Article  PubMed  Google Scholar 

  13. Koizumi N, Inatomi T, Suzuki T, Shiraishi A, Ohashi Y, Kandori M, Miyazaki D, Inoue Y, Soma T, Nishida K, Takase H, Sugita S, Mochizuki M, Kinoshita S, Japan Corneal Endotheliitis Study G (2015) Clinical features and management of cytomegalovirus corneal endotheliitis: analysis of 106 cases from the Japan corneal endotheliitis study. Br J Ophthalmol 99:54–58. https://doi.org/10.1136/bjophthalmol-2013-304625

    Article  PubMed  Google Scholar 

  14. Chan AS, Mehta JS, Al Jajeh I, Iqbal J, Anshu A, Tan DT (2016) Histological features of Cytomegalovirus-related corneal graft infections, its associated features and clinical significance. Br J Ophthalmol 100:601–606. https://doi.org/10.1136/bjophthalmol-2015-307390

    Article  PubMed  Google Scholar 

  15. Miyazaki D, Uotani R, Inoue M, Haruki T, Shimizu Y, Yakura K, Yamagami S, Suzutani T, Hosogai M, Isomura H, Inoue Y (2017) Corneal endothelial cells activate innate and acquired arm of anti-viral responses after cytomegalovirus infection. Exp Eye Res 161:143–152. https://doi.org/10.1016/j.exer.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  16. Su CC, Gao CM, Peng FT, Jou TS, Wang IJ (2022) Host immune response and associated clinical features in a primary cytomegalovirus eye infection model using anterior chamber inoculation. Invest Ophthalmol Vis Sci 63:18. https://doi.org/10.1167/iovs.63.5.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takase H, Futagami Y, Yoshida T, Kamoi K, Sugita S, Imai Y, Mochizuki M (2006) Cytokine profile in aqueous humor and sera of patients with infectious or noninfectious uveitis. Invest Ophthalmol Vis Sci 47:1557–1561. https://doi.org/10.1167/iovs.05-0836

    Article  PubMed  Google Scholar 

  18. Curnow SJ, Murray PI (2006) Inflammatory mediators of uveitis: cytokines and chemokines. Curr Opin Ophthalmol 17:532–537. https://doi.org/10.1097/ICU.0b013e32801094b5

    Article  PubMed  Google Scholar 

  19. La Distia NR, Putera I, Mayasari YD, Hikmahwati W, Pertiwi AM, Ridwan AS, Sitompul R, Westcott M, Chee SP, Pavesio C, Thng ZX, Gupta V, Agrawal R (2022) Clinical characteristics and treatment outcomes of cytomegalovirus anterior uveitis and endotheliitis: a systematic review and meta-analysis. Surv Ophthalmol 67:1014–1030. https://doi.org/10.1016/j.survophthal.2021.12.006

    Article  Google Scholar 

  20. Forte E, Zhang Z, Thorp EB, Hummel M (2020) Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front Cell Infect Microbiol 10:130. https://doi.org/10.3389/fcimb.2020.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rose-John S (2018) Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a028415

  22. Apostolakis S, Vogiatzi K, Amanatidou V, Spandidos DA (2009) Interleukin 8 and cardiovascular disease. Cardiovasc Res 84:353–360. https://doi.org/10.1093/cvr/cvp241

    Article  CAS  PubMed  Google Scholar 

  23. Wei H, Li B, Sun A, Guo F (2019) Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol 1172:79–96. https://doi.org/10.1007/978-981-13-9367-9_4

    Article  CAS  PubMed  Google Scholar 

  24. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326. https://doi.org/10.1089/jir.2008.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M, Castro PF, Garcia L, Gabrielli L, Corbalan R, Garrido-Olivares L, Lavandero S (2021) VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 1867:166170. https://doi.org/10.1016/j.bbadis.2021.166170

    Article  CAS  PubMed  Google Scholar 

  26. Shibuya M (2015) VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets 15:135–144. https://doi.org/10.2174/1871530315666150316121956

    Article  CAS  PubMed  Google Scholar 

  27. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P (2014) Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 13:272–280. https://doi.org/10.1016/j.autrev.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  28. Roberts AW (2005) G-CSF: a key regulator of neutrophil production, but that’s not all! Growth Fact 23:33–41. https://doi.org/10.1080/08977190500055836

    Article  CAS  Google Scholar 

  29. Bui TM, Wiesolek HL, Sumagin R (2020) ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 108:787–799. https://doi.org/10.1002/JLB.2MR0220-549R

    Article  CAS  PubMed  Google Scholar 

  30. Kak G, Raza M, Tiwari BK (2018) Interferon-gamma (IFN-gamma): exploring its implications in infectious diseases. Biomol Concepts 9:64–79. https://doi.org/10.1515/bmc-2018-0007

    Article  CAS  PubMed  Google Scholar 

  31. Nahdi I, Abdelwahed RB, Boukoum H, Bressollette-Bodin C, Attia S, Yahia SB, Fisson S, Khairallah M, Aouni M (2013) Herpesvirus detection and cytokine levels (IL-10, IL-6, and IFN-gamma) in ocular fluid from Tunisian immunocompetent patients with uveitis. J Med Virol 85:2079–2086. https://doi.org/10.1002/jmv.23708

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Ang M, Cheung CM, Vania M, Chan AS, Waduthantri S, Yang H, Chee SP (2012) Aqueous cytokine changes associated with Posner-Schlossman syndrome with and without human cytomegalovirus. PLoS ONE 7:e44453. https://doi.org/10.1371/journal.pone.0044453

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iyer JV, Connolly J, Agrawal R, Yeo TK, Lee B, Au B, Teoh SC (2013) Cytokine analysis of aqueous humor in HIV patients with cytomegalovirus retinitis. Cytokine 64:541–547. https://doi.org/10.1016/j.cyto.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  34. Miyanaga M, Sugita S, Shimizu N, Morio T, Miyata K, Maruyama K, Kinoshita S, Mochizuki M (2010) A significant association of viral loads with corneal endothelial cell damage in cytomegalovirus anterior uveitis. Br J Ophthalmol 94:336–340. https://doi.org/10.1136/bjo.2008.156422

    Article  PubMed  Google Scholar 

  35. Kandori M, Miyazaki D, Yakura K, Komatsu N, Touge C, Ishikura R, Inoue Y (2013) Relationship between the number of cytomegalovirus in anterior chamber and severity of anterior segment inflammation. Jpn J Ophthalmol 57:497–502. https://doi.org/10.1007/s10384-013-0268-2

    Article  PubMed  Google Scholar 

  36. Inoue Y (2014) Review of clinical and basic approaches to corneal endotheliitis. Cornea 33(Suppl 11):S3-8. https://doi.org/10.1097/ICO.0000000000000228

    Article  PubMed  Google Scholar 

  37. Weseslindtner L, Nachbagauer R, Kundi M, Jaksch P, Kerschner H, Simon B, Hatos-Agyi L, Scheed A, Aberle JH, Klepetko W, Puchhammer-Stockl E (2011) Human cytomegalovirus infection in lung transplant recipients triggers a CXCL-10 response. Am J Transplant 11:542–552. https://doi.org/10.1111/j.1600-6143.2010.03404.x

    Article  CAS  PubMed  Google Scholar 

  38. Iyer JV, Agrawal R, Yeo TK, Gunasekeran DV, Balne PK, Lee B, Au VB, Connolly J, Teoh SC (2016) Aqueous humor immune factors and cytomegalovirus (CMV) levels in CMV retinitis through treatment - the CRIGSS study. Cytokine 84:56–62. https://doi.org/10.1016/j.cyto.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, Tian B, Tao Y, Hou J, Zhao XT, Li XX (2014) Continued decline of aqueous interleukin-8 after multiple intravitreal injections of ganciclovir for cytomegalovirus retinitis. J Ocul Pharmacol Ther 30:587–592. https://doi.org/10.1089/jop.2013.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian Z, Fan H, Chen X, Tao Y (2022) The predictive value of interleukin-8 in the development of cytomegalovirus retinitis in HIV-negative patients. Ophthalmic Res 65:287–292. https://doi.org/10.1159/000513791

    Article  CAS  PubMed  Google Scholar 

  41. Zhang C, Wang YE, Miao H, Hou J (2022) Efficacy and safety of aqueous interleukin-8-guided treatment in cytomegalovirus retinitis after bone marrow hematopoietic stem cell transplantation. Ocul Immunol Inflamm 30:758–765. https://doi.org/10.1080/09273948.2020.1823422

    Article  CAS  PubMed  Google Scholar 

  42. Mansfield AS, Nevala WK, Dronca RS, Leontovich AA, Shuster L, Markovic SN (2012) Normal ageing is associated with an increase in Th2 cells, MCP-1 (CCL1) and RANTES (CCL5), with differences in sCD40L and PDGF-AA between sexes. Clin Exp Immunol 170:186–193. https://doi.org/10.1111/j.1365-2249.2012.04644.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number 81970768).

Author information

Authors and Affiliations

Authors

Contributions

Design of the study (XJ Zhang, Y Qu, J Hong); conduct of the study (XJ Zhang, JX Zhang); collection and management of data (XJ Zhang, P Zhang); analysis and interpretation of data (XJ Zhang; RM Peng); writing of manuscript (XJ Zhang); and review or approval of manuscript (J Hong).

Corresponding author

Correspondence to Jing Hong.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Medical Science Research Ethics Committee of Peking University Third Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XJ., Zhang, JX., Qu, Y. et al. Cytokine analysis of aqueous humor in patients with cytomegalovirus corneal endotheliitis. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06417-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06417-w

Keywords

Navigation