Skip to main content

Advertisement

Log in

Differential diagnosis of myopic choroidal neovascularization (mCNV): insights from multimodal imaging and treatment implications

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this article is to conduct a comprehensive systematic review about the current understandings and differential diagnosis of myopic choroidal neovascularization (mCNV) and other several similar diseases, describing their multimodal imaging analysis, prognostic implications, and current types of management.

Methods

This systematic review was performed based on a search on the PubMed database of relevant papers regarding mCNV and other entities discussed in the paper, according to our current knowledge.

Results

Through the integration of a multimodal imaging approach, especially optical coherence tomography (OCT), along with accurate demographic and clinical assessment, it becomes possible to effectively differentiate mCNV from similar yet heterogeneous entities. These conditions include macular hemorrhage due to new lacquer crack (LC) formation, inflammatory diseases such as punctate inner choroidopathy (PIC)/multifocal choroidits (MFC) and epiphenomenon multiple evanescent white dot syndrome (Epi-MEWDS), neovascular age-related macular degeneration (nAMD), idiopathic CNV (ICNV), dome-shaped macula (DSM) with subretinal fluid, retinal pigment epithelium (RPE) humps, angioid streaks (AS), choroidal rupture (CR), and choroidal osteoma (CO). Each one of these entities will be described and discussed in this article.

Conclusion

Myopic choroidal neovascularization is a common retinal condition, especially among young individuals. Accurate diagnosis and differentiation from similar conditions are crucial for effective treatment. Multimodal imaging, particularly OCT, plays a crucial role in precise assessment. Future research should focus on defining biomarkers and distinguishing features to facilitate prompt treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

AS:

Angioid streaks

BM:

Bruch’s membrane

CC:

Choriocapillaris

CNV:

Choroidal neovascularization

CO:

Choroidal osteoma

CR:

Choroidal rupture

DSM:

Dome-shaped macula

EDI:

Enhanced-depth imaging

ELM:

External limiting membrane

EZ:

Ellipsoid zone

FA:

Fluorescein angiography

FAF:

Fundus autofluorescence

HM:

High myopia

iCNV:

Inflammatory CNV

ICNV:

Idiopathic CNV

ICGA:

Indocyanine green angiography

IMH:

Idiopathic macular hemorrhage

IRC:

Intraretinal cyst

LC:

Lacquer crack

MEWDS:

Multiple evanescent white dot syndrome

MFC:

Multifocal choroiditis

MNV:

Macular neovascularization

mCNV:

Myopic choroidal neovascularization

nAMD:

Neovascular AMD

NIR:

Near-infrared reflectance

OCT:

Optical coherence tomography

OCTA:

Optical coherence tomography angiography

PDT:

Photodynamic therapy

PIC:

Punctate inner choroidopathy

PM:

Pathologic myopia

PRN:

Pro re nata

PXE:

Pseudoxantoma elasticum

RD:

Retinal detachment

RPE:

Retinal pigment epithelium

SHRM:

Subretinal hyperreflective material

SD-OCT:

Spectral domain OCT

SRF:

Subretinal fluid

TTT:

Transpupillary thermotherapy

VA:

Visual acuity

VEGF:

Vascular endothelial growth factor

WSS:

White spot syndrome

References   

  1. Saw SM, Katz J, Schein OD et al (1996) Epidemiology of myopia. Epidemiol Rev 18:175–187. https://doi.org/10.1093/oxfordjournals.epirev.a017924

    Article  CAS  PubMed  Google Scholar 

  2. Wong TY, Ferreira A, Hughes R, et al (2014) Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 157. https://doi.org/10.1016/j.ajo.2013.08.010

  3. Ng DSC, Lai TYY (2022) Insights into the global epidemic of high myopia and its implications. JAMA Ophthalmol 140:123–124. https://doi.org/10.1001/jamaophthalmol.2021.5347

    Article  PubMed  Google Scholar 

  4. Holden BA, Fricke TR, Wilson DA et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  PubMed  Google Scholar 

  5. Ng DSC, Chan LKY, Lai TYY (2023) Myopic macular diseases: a review. Clin Exp Ophthalmol 51:229–242. https://doi.org/10.1111/ceo.14200

    Article  PubMed  Google Scholar 

  6. Grossniklaus HE, Green WR (1992) Pathologic findings in pathologic myopia. Retina 12:127–133. https://doi.org/10.1097/00006982-199212020-00009

    Article  CAS  PubMed  Google Scholar 

  7. Ohno-Matsui K, Kawasaki R, Jonas JB et al (2015) International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 159:877–83.e7. https://doi.org/10.1016/j.ajo.2015.01.022

    Article  PubMed  Google Scholar 

  8. Ruiz-Medrano J, Montero JA, Flores-Moreno I et al (2019) Myopic maculopathy: current status and proposal for a new classification and grading system (ATN). Prog Retin Eye Res 69:80–115. https://doi.org/10.1016/j.preteyeres.2018.10.005

    Article  PubMed  Google Scholar 

  9. Avila MP, Weiter JJ, Jalkh AE et al (1984) Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology 91:1573–1581. https://doi.org/10.1016/s0161-6420(84)34116-1

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SY, Laroche A, Leguen Y et al (1996) Etiology of choroidal neovascularization in young patients. Ophthalmology 103:1241–1244. https://doi.org/10.1016/s0161-6420(96)30515-0

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi K, Mandai M, Suzuma I et al (2002) Expression of estrogen receptor in the choroidal neovascular membranes in highly myopic eyes. Retina 22:418–422. https://doi.org/10.1097/00006982-200208000-00004

    Article  PubMed  Google Scholar 

  12. Yokoi T, Ohno-Matsui K (2018) Diagnosis and treatment of myopic maculopathy. Asia-Pacific J Ophthalmol 7:415–421. https://doi.org/10.22608/APO.2018290

    Article  Google Scholar 

  13. Ho S, Ly A, Ohno-Matsui K et al (2023) Diagnostic accuracy of OCTA and OCT for myopic choroidal neovascularisation: a systematic review and meta-analysis. Eye (Lond) 37:21–29. https://doi.org/10.1038/s41433-022-02227-8

    Article  PubMed  Google Scholar 

  14. Ang M, Wong CW, Hoang QV et al (2019) Imaging in myopia: potential biomarkers, current challenges and future developments. Br J Ophthalmol 103:855–862. https://doi.org/10.1136/bjophthalmol-2018-312866

    Article  PubMed  Google Scholar 

  15. Feo A, Stradiotto E, Sacconi R, et al (2023) Subretinal hyperreflective material (SHRM) in retinal and chorioretinal disorders: a comprehensive review. Surv Ophthalmol

  16. Parodi MB, Iacono P, Sacconi R et al (2015) Fundus autofluorescence changes after ranibizumab treatment for subfoveal choroidal neovascularization secondary to pathologic myopia. Am J Ophthalmol 160:322-327.e2. https://doi.org/10.1016/j.ajo.2015.04.030

    Article  CAS  PubMed  Google Scholar 

  17. Iacono P, Battaglia Parodi M, Selvi F et al (2017) Factors influencing visual acuity in patients receiving anti-vascular endothelial growth factor for myopic choroidal neovascularization. Retina 37:1931–191. https://doi.org/10.1097/IAE.0000000000001436

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Zhang X, Wen F (2015) The fundus autofluorescence spectrum of punctate inner choroidopathy. J Ophthalmol 2015:202097. https://doi.org/10.1155/2015/202097

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma F, Yuan M, Kozak I (2023) Multispectral imaging: review of current applications. Surv Ophthalmol 68:889–904. https://doi.org/10.1016/j.survophthal.2023.06.004

    Article  PubMed  Google Scholar 

  20. Klein RM, Green S (1988) The development of lacquer cracks in pathologic myopia. Am J Ophthalmol 106:282–285. https://doi.org/10.1016/0002-9394(88)90362-5

    Article  CAS  PubMed  Google Scholar 

  21. Choudhury F, Meuer SM, Klein R et al (2018) Prevalence and characteristics of myopic degeneration in an adult Chinese American population: the Chinese American Eye Study. Am J Ophthalmol 187:34–42. https://doi.org/10.1016/j.ajo.2017.12.010

    Article  PubMed  Google Scholar 

  22. Haarman AEG, Tedja MS, Brussee C et al (2022) Prevalence of myopic macular features in Dutch individuals of European ancestry with high myopia. JAMA Ophthalmol 140:115–123. https://doi.org/10.1001/jamaophthalmol.2021.5346

    Article  PubMed  Google Scholar 

  23. Klein RM, Curtin BJ (1975) Lacquer crack lesions in pathologic myopia. Am J Ophthalmol 79:386–392. https://doi.org/10.1016/0002-9394(75)90611-x

    Article  CAS  PubMed  Google Scholar 

  24. Ohno-Matsui K, Tokoro T (1996) The progression of lacquer cracks in pathologic myopia. Retina 16:29–37. https://doi.org/10.1097/00006982-199616010-00006

    Article  CAS  PubMed  Google Scholar 

  25. Ohno-Matsui K, Yoshida T, Futagami S et al (2003) Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol 87:570–3. https://doi.org/10.1136/bjo.87.5.570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crincoli E, Ferrara S, Miere A et al (2023) Correlation between AI-measured lacquer cracks extension and development of myopic choroidal neovascularization. Eye (Basingstoke). https://doi.org/10.1038/s41433-023-02451-w

    Article  Google Scholar 

  27. Xu X, Fang Y, Uramoto K et al (2019) Clinical features of lacquer cracks in eyes with pathologic myopia. Retina 39:1265–1277. https://doi.org/10.1097/IAE.0000000000002168

    Article  PubMed  Google Scholar 

  28. Liu C-F, Liu L, Lai C-C et al (2014) Multimodal imaging including spectral-domain optical coherence tomography and confocal near-infrared reflectance for characterization of lacquer cracks in highly myopic eyes. Eye (Lond) 28:1437–1445. https://doi.org/10.1038/eye.2014.221

    Article  PubMed  Google Scholar 

  29. Ren P, Lu L, Tang X et al (2020) Clinical features of simple hemorrhage and myopic choroidal neovascularization associated with lacquer cracks in pathologic myopia. Graefes Arch Clin Exp Ophthalmol 258:2661–2669. https://doi.org/10.1007/s00417-020-04778-6

    Article  PubMed  Google Scholar 

  30. Battista M, Sacconi R, Borrelli E et al (2022) Discerning between macular hemorrhages due to macular neovascularization or due to spontaneous Bruch’s membrane rupture in high myopia: a comparative analysis between OCTA and fluorescein angiography. Ophthalmol Ther 11:821–831. https://doi.org/10.1007/s40123-022-00484-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mularoni C, Servillo A, Sacconi R et al (2023) ’Structural OCT changes distinguishing between myopic macular haemorrhages due to choroidal neovascularization and spontaneous Bruch’s membrane rupture: the “myopic 2 binary reflective sign.” Eye (Lond). https://doi.org/10.1038/s41433-023-02780-w

    Article  PubMed  Google Scholar 

  32. Essex RW, Wong J, Jampol LM et al (2013) Idiopathic multifocal choroiditis: a comment on present and past nomenclature. Retina 33:1–4. https://doi.org/10.1097/IAE.0b013e3182641860

    Article  PubMed  Google Scholar 

  33. Cicinelli MV, Ramtohul P, Marchese A et al (2023) Latest advances in white spot syndromes: new findings and interpretations. Prog Retin Eye Res 97:101207. https://doi.org/10.1016/j.preteyeres.2023.101207

    Article  PubMed  Google Scholar 

  34. Kedhar SR, Thorne JE, Wittenberg S et al (2007) Multifocal choroiditis with panuveitis and punctate inner choroidopathy: comparison of clinical characteristics at presentation. Retina 27:1174–1179. https://doi.org/10.1097/IAE.0b013e318068de72

    Article  PubMed  Google Scholar 

  35. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for multiple evanescent white dot syndrome. Am J Ophthalmol 228:198–204. https://doi.org/10.1016/j.ajo.2021.03.050

    Article  Google Scholar 

  36. Levison AL, Baynes KM, Lowder CY et al (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101:616–622. https://doi.org/10.1136/bjophthalmol-2016-308806

    Article  PubMed  Google Scholar 

  37. Zahid S, Chen KC, Jung JJ et al (2017) Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis. Retina 37:1451–1463. https://doi.org/10.1097/IAE.0000000000001381

    Article  PubMed  Google Scholar 

  38. Hoang QV, Cunningham ET, Sorenson JA, Freund KB (2013) The “pitchfork sign” a distinctive optical coherence tomography finding in inflammatory choroidal neovascularization. Retina 33:1049–1055. https://doi.org/10.1097/IAE.0b013e31827e25b8

    Article  PubMed  Google Scholar 

  39. Gallego-Pinazo R, Hernández S, Dolz-Marco R (2021) Key multimodal fundus imaging findings to recognize multifocal choroiditis in patients with pathological myopia. Front Med (Lausanne) 8:831764. https://doi.org/10.3389/fmed.2021.831764

    Article  PubMed  Google Scholar 

  40. Zicarelli F, Azzolini C, Cornish E et al (2021) Optical coherence tomography features of choroidal neovascularization and their correlation with age, gender, and underlying disease. Retina 41:1076–1083. https://doi.org/10.1097/IAE.0000000000002984

    Article  CAS  PubMed  Google Scholar 

  41. Falavarjani KG, Au A, Anvari P et al (2019) En face OCT of type 2 neovascularization:a reappraisal of the pitchfork sign. Ophthalmic Surg Lasers Imaging Retina 50:719–725. https://doi.org/10.3928/23258160-20191031-07

    Article  PubMed  Google Scholar 

  42. Shi X, Cai Y, Luo X et al (2020) Presence or absence of choroidal hyper-transmission by SD-OCT imaging distinguishes inflammatory from neovascular lesions in myopic eyes. Graefes Arch Clin Exp Ophthalmol 258:751–758. https://doi.org/10.1007/s00417-019-04571-0

    Article  PubMed  Google Scholar 

  43. Giuffrè C, Marchese A, Fogliato G et al (2021) The “Sponge sign”: a novel feature of inflammatory choroidal neovascularization. Eur J Ophthalmol 31:1240–1247. https://doi.org/10.1177/1120672120917621

    Article  PubMed  Google Scholar 

  44. Gao R, Ma J, Zhang Z et al (2021) Spectral domain-optical coherence tomography retinal biomarkers in choroidal neovascularization of multifocal choroiditis, myopic choroidal neovascularization, and idiopathic choroidal neovascularization. Ann Med 53:1270–1278. https://doi.org/10.1080/07853890.2021.1961015

    Article  CAS  PubMed  Google Scholar 

  45. Hady SK, Xie S, Freund KB et al (2022) Prevalence and characteristics of multifocal choroiditis/ punctate inner choroidopathy in pathologic myopia eyes with patchy atrophy. Retina 42:669–678. https://doi.org/10.1097/IAE.0000000000003383

    Article  CAS  PubMed  Google Scholar 

  46. de Groot EL, de Boer JH, Ossewaarde-van Norel J (2022) Idiopathic multifocal choroiditis and punctate inner choroidopathy - evaluation of risk factors for increased relapse rate: a 2-year prospective observational cohort study. Ophthalmologica 245:476–486. https://doi.org/10.1159/000526663

    Article  CAS  PubMed  Google Scholar 

  47. Cicinelli MV, Marchese A, Ramtohul P et al (2022) Punctate inner choroidopathy-like reactions in unrelated retinal diseases. Retina 42:2099–2109. https://doi.org/10.1097/IAE.0000000000003602

    Article  CAS  PubMed  Google Scholar 

  48. Invernizzi A, Pichi F, Symes R et al (2020) Twenty-four-month outcomes of inflammatory choroidal neovascularisation treated with intravitreal anti-vascular endothelial growth factors: a comparison between two treatment regimens. Br J Ophthalmol 104:1052–1056. https://doi.org/10.1136/bjophthalmol-2019-315257

    Article  PubMed  Google Scholar 

  49. Kim M, Lee J, Park Y-G, Park Y-H (2022) Long-term analysis of clinical features and treatment outcomes of inflammatory choroidal neovascularization. Am J Ophthalmol 233:18–29. https://doi.org/10.1016/j.ajo.2021.07.014

    Article  PubMed  Google Scholar 

  50. Ramtohul P, Cicinelli MV, Dolz-Marco R et al (2023) The chrysanthemum phenotype of idiopathic multifocal choroiditis. Retina 43:1377–1385. https://doi.org/10.1097/IAE.0000000000003815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Groot EL, Ten Dam-van Loon NH, Kouwenberg CV et al (2023) Exploring imaging characteristics associated with disease activity in idiopathic multifocal choroiditis: a multimodal imaging approach. Am J Ophthalmol 252:45–58. https://doi.org/10.1016/j.ajo.2023.03.022

    Article  PubMed  Google Scholar 

  52. Kongwattananon W, Grasic D, Lin H et al (2022) Role of optical coherence tomography angiography in detecting and monitoring inflammatory choroidal neovascularization. Retina 42:1047–1056. https://doi.org/10.1097/IAE.0000000000003420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D’Ambrosio E, Tortorella P, Iannetti L (2014) Management of uveitis-related choroidal neovascularization: from the pathogenesis to the therapy. J Ophthalmol 2014:450428. https://doi.org/10.1155/2014/450428

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ramakrishnan MS, Patel AP, Melles R, Vora RA (2021) Multiple evanescent white dot syndrome: findings from a large Northern California cohort. Ophthalmol Retina 5:850–854. https://doi.org/10.1016/j.oret.2020.11.016

    Article  PubMed  Google Scholar 

  55. Testi I, Modugno RL, Pavesio C (2021) Multimodal imaging supporting the pathophysiology of white dot syndromes. J Ophthalmic Inflamm Infect 11:32. https://doi.org/10.1186/s12348-021-00261-3

    Article  PubMed  PubMed Central  Google Scholar 

  56. Papasavvas I, Mantovani A, Tugal-Tutkun I, Herbort CP (2021) Multiple evanescent white dot syndrome (MEWDS): update on practical appraisal, diagnosis and clinicopathology; a review and an alternative comprehensive perspective. J Ophthalmic Inflamm Infect 11:45. https://doi.org/10.1186/s12348-021-00279-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Essilfie J, Bacci T, Abdelhakim AH et al (2022) Are there two forms of multiple evanescent white dot syndrome? Retina 42:227–235. https://doi.org/10.1097/IAE.0000000000003288

    Article  CAS  PubMed  Google Scholar 

  58. Ho AC, Yannuzzi LA, Pisicano K, DeRosa J (1995) The natural history of idiopathic subfoveal choroidal neovascularization. Ophthalmology 102:782–789. https://doi.org/10.1016/s0161-6420(95)30968-2

    Article  CAS  PubMed  Google Scholar 

  59. Machida S, Fujiwara T, Murai K-I et al (2008) Idiopathic choroidal neovascularization as an early manifestation of inflammatory chorioretinal diseases. Retina 28:703–710. https://doi.org/10.1097/IAE.0b013e318160798f

    Article  PubMed  Google Scholar 

  60. Yin H, Fang X, Ma J et al (2016) Idiopathic choroidal neovascularization: intraocular inflammatory cytokines and the effect of intravitreal ranibizumab treatment. Sci Rep 6:31880. https://doi.org/10.1038/srep31880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Age-related macular degeneration. N Engl J Med 342:483–492. https://doi.org/10.1056/NEJM200002173420707

    Article  CAS  PubMed  Google Scholar 

  62. Spaide RF, Jaffe GJ, Sarraf D et al (2020) Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology 127:616–636. https://doi.org/10.1016/j.ophtha.2019.11.004

    Article  PubMed  Google Scholar 

  63. Keane PA, Liakopoulos S, Chang KT et al (2008) Comparison of the optical coherence tomographic features of choroidal neovascular membranes in pathological myopia versus age-related macular degeneration, using quantitative subanalysis. Br J Ophthalmol 92:1081–1085. https://doi.org/10.1136/bjo.2008.138891

    Article  CAS  PubMed  Google Scholar 

  64. Wilkerson JL, Stiles MA, Gurley JM et al (2019) Sphingosine kinase-1 is essential for maintaining external/outer limiting membrane and associated adherens junctions in the aging retina. Mol Neurobiol 56:7188–7207. https://doi.org/10.1007/s12035-019-1599-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sayanagi K, Fujimoto S, Hara C et al (2022) Characteristics of choroidal neovascularization in elderly eyes with high myopia not meeting the pathologic myopia definition. Sci Rep 12:13795. https://doi.org/10.1038/s41598-022-18074-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohno-Matsui K, Wu P-C, Yamashiro K et al (2021) IMI pathologic myopia. Invest Ophthalmol Vis Sci 62:5. https://doi.org/10.1167/iovs.62.5.5

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ricci F, Bandello F, Navarra P, et al (2020) Neovascular age-related macular degeneration: therapeutic management and new-upcoming approaches. Int J Mol Sci 21. https://doi.org/10.3390/ijms21218242

  68. Wolf S, Balciuniene VJ, Laganovska G et al (2014) RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 121:682–92.e2. https://doi.org/10.1016/j.ophtha.2013.10.023

    Article  PubMed  Google Scholar 

  69. Chen Y, Sharma T, Li X et al (2019) Ranibizumab versus verteporfin photodynamic therapy in asian patients with myopic choroidal neovascularization: brilliance, a 12-month, randomized, double-masked study. Retina 39:1985–1994. https://doi.org/10.1097/IAE.0000000000002292

    Article  CAS  PubMed  Google Scholar 

  70. Hamilton RD, Clemens A, Minnella AM et al (2020) Real-world effectiveness and safety of ranibizumab for the treatment of myopic choroidal neovascularization: Results from the LUMINOUS study. PLoS ONE 15:e0227557. https://doi.org/10.1371/journal.pone.0227557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ikuno Y, Ohno-Matsui K, Wong TY et al (2015) Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study. Ophthalmology 122:1220–1227. https://doi.org/10.1016/j.ophtha.2015.01.025

    Article  PubMed  Google Scholar 

  72. Zhou Y, Yang S, Yuan Y et al (2020) Progression and new onset of macular retinoschisis in myopic choroidal neovascularization eyes after Conbercept therapy: a post-hoc analysis. Eye (Lond) 34:523–529. https://doi.org/10.1038/s41433-019-0516-x

    Article  CAS  PubMed  Google Scholar 

  73. Cui Z, Zhou W, Chang Q, et al (2021) Cost-effectiveness of conbercept vs. ranibizumab for age-related macular degeneration, diabetic macular edema, and pathological myopia: population-based cohort study and Markov model. Front Med (Lausanne) 8:750132. https://doi.org/10.3389/fmed.2021.750132

  74. Jain M, Gopal L, Padhi TR (2021) Dome-shaped maculopathy: a review. Eye (Lond) 35:2458–2467. https://doi.org/10.1038/s41433-021-01518-w

    Article  PubMed  Google Scholar 

  75. Liang I-C, Shimada N, Tanaka Y et al (2015) Comparison of clinical features in highly myopic eyes with and without a dome-shaped macula. Ophthalmology 122:1591–1600. https://doi.org/10.1016/j.ophtha.2015.04.012

    Article  PubMed  Google Scholar 

  76. Pozzo Giuffrida F, Leone G, Mainetti C et al (2022) Response to treatment of choroidal neovascularization in highly myopic eyes with dome-shaped macula: two years of follow-up. Retina 42:1057–1064. https://doi.org/10.1097/IAE.0000000000003431

    Article  CAS  PubMed  Google Scholar 

  77. Viola F, Dell’Arti L, Benatti E et al (2015) Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study. Am J Ophthalmol 159:44–52. https://doi.org/10.1016/j.ajo.2014.09.026

    Article  PubMed  Google Scholar 

  78. Arapi I, Neri P, Mariotti C et al (2015) Considering photodynamic therapy as a therapeutic modality in selected cases of dome-shaped macula complicated by foveal serous retinal detachment. Ophthalmic Surg Lasers Imaging Retina 46:217–223. https://doi.org/10.3928/23258160-20150213-15

    Article  PubMed  Google Scholar 

  79. Chinskey ND, Johnson MW (2013) Treatment of subretinal fluid associated with dome-shaped macula. Ophthalmic Surg Lasers Imaging Retina 44:593–595. https://doi.org/10.3928/23258160-20131010-01

    Article  PubMed  Google Scholar 

  80. Battaglia Parodi M, Iacono P, Bandello F (2018) Subthreshold laser treatment for serous retinal detachment in dome-shaped macula associated with pathologic myopia. Retina 38:359–363. https://doi.org/10.1097/IAE.0000000000001524

    Article  PubMed  Google Scholar 

  81. Dirani A, Matet A, Beydoun T et al (2014) Resolution of foveal detachment in dome-shaped macula after treatment by spironolactone: report of two cases and mini-review of the literature. Clin Ophthalmol 8:999–1002. https://doi.org/10.2147/OPTH.S62267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marchese A, Arrigo A, Sacconi R et al (2019) Spectrum of choroidal neovascularisation associated with dome-shaped macula. Br J Ophthalmol 103:1146–1151. https://doi.org/10.1136/bjophthalmol-2018-312780

    Article  PubMed  Google Scholar 

  83. Shin YK, Han SH, Kang SW et al (2021) Myopic foveal detachment associated with pachychoroid characteristics. BMC Ophthalmol 21:288. https://doi.org/10.1186/s12886-021-02040-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marchese A, Carnevali A, Sacconi R et al (2017) Retinal pigment epithelium humps in high myopia. Am J Ophthalmol 182:56–61. https://doi.org/10.1016/j.ajo.2017.07.013

    Article  PubMed  Google Scholar 

  85. Marchese A, Cicinelli MV, Carnevali A et al (2020) Complicated retinal pigment epithelium humps in high myopia. Ophthalmic Surg Lasers Imaging Retina 51:119–123. https://doi.org/10.3928/23258160-20200129-09

    Article  PubMed  Google Scholar 

  86. Chatziralli I, Saitakis G, Dimitriou E et al (2019) Angioid streaks: a comprehensive review from pathophysiology to treatment. Retina 39:1–11. https://doi.org/10.1097/IAE.0000000000002327

    Article  CAS  PubMed  Google Scholar 

  87. Rohart C, Le H-M, Estrada-Walker J et al (2023) Long-term prognosis of choroidal neovascularization complicating angioid streaks. Retina. https://doi.org/10.1097/IAE.0000000000003746

    Article  PubMed  Google Scholar 

  88. Cicinelli MV, Torrioli E, La Franca L et al (2023) Incidence and risk factors of visual impairment in patients with angioid streaks and macular neovascularization. Ophthalmol Retina 7:431–440. https://doi.org/10.1016/j.oret.2022.12.002

    Article  PubMed  Google Scholar 

  89. Lupidi M, Muzi A, Castellucci G et al (2021) The choroidal rupture: current concepts and insights. Surv Ophthalmol 66:761–770. https://doi.org/10.1016/j.survophthal.2021.01.014

    Article  PubMed  Google Scholar 

  90. Wood CM, Richardson J (1990) Chorioretinal neovascular membranes complicating contusional eye injuries with indirect choroidal ruptures. Br J Ophthalmol 74:93–96. https://doi.org/10.1136/bjo.74.2.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lorusso M, Micelli Ferrari L, Nikolopoulou E et al (2019) Optical coherence tomography angiography evolution of choroidal neovascular membrane in choroidal rupture managed by intravitreal bevacizumab. Case Rep Ophthalmol Med 2019:5241573. https://doi.org/10.1155/2019/5241573

    Article  PubMed  PubMed Central  Google Scholar 

  92. Singh S, Saxena S (2023) Unraveling the perplexities of choroidal rupture. Indian J Ophthalmol 71:2602–2603. https://doi.org/10.4103/IJO.IJO_326_23

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shields CL, Shields JA, Augsburger JJ (1988) Choroidal osteoma. Surv Ophthalmol 33:17–27. https://doi.org/10.1016/0039-6257(88)90069-0

    Article  CAS  PubMed  Google Scholar 

  94. Zhang L, Ran Q-B, Lei C-Y, Zhang M-X (2023) Clinical features and therapeutic management of choroidal osteoma: a systematic review. Surv Ophthalmol. https://doi.org/10.1016/j.survophthal.2023.06.002

    Article  PubMed  Google Scholar 

  95. Cennamo G, Iacucci G, Breve MA et al (2023) The role of choriocapillaris vessel density in the pathogenesis of macular neovascularization associated with choroidal osteoma. Graefes Arch Clin Exp Ophthalmol 261:1283–1287. https://doi.org/10.1007/s00417-022-05921-1

    Article  PubMed  Google Scholar 

  96. Bolletta E, De Simone L, Pellegrini M, et al (2023) Optical coherence tomography in inflammatory and neoplastic lesions deforming the choroidal profile. Diagnostics (Basel) 13s. https://doi.org/10.3390/diagnostics13121991

  97. Cennamo G, Romano MR, Iovino C et al (2017) OCT angiography in choroidal neovascularization secondary to choroidal osteoma. Acta Ophthalmol 95:e152–e154. https://doi.org/10.1111/aos.13142

    Article  PubMed  Google Scholar 

  98. Furino C, Di Antonio L, Grassi MO et al (2019) Choroidal neovascularization due to choroidal osteoma treated with anti-vascular endothelial growth factor therapy: an optical coherence tomography angiography study. Eur J Ophthalmol 29:323–329. https://doi.org/10.1177/1120672118792187

    Article  PubMed  Google Scholar 

  99. Rajabian F, Arrigo A, Grazioli A, et al (2021) Focal choroidal excavation and pitchfork sign in choroidal neovascularisation associated with choroidal osteoma. Eur J Ophthalmol 31:NP67–NP70. https://doi.org/10.1177/1120672119892802

  100. Seong HJ, Kim YJ, Choi EY et al (2022) Complications, treatments, and visual prognosis of choroidal osteomas. Graefes Arch Clin Exp Ophthalmol 260:1713–1721. https://doi.org/10.1007/s00417-021-05487-4

    Article  CAS  PubMed  Google Scholar 

  101. Kang HG, Kim TY, Lee J et al (2022) Predicting visual outcomes in choroidal osteoma treated with anti-vascular endothelial growth factor. Am J Ophthalmol 244:143–151. https://doi.org/10.1016/j.ajo.2022.08.007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Feo.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants of animals performed by any of the authors. This article is a review. Therefore, ethical approval by IRB was not required.

Informed consent

This article does not contain any studies with human participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feo, A., De Simone, L., Cimino, L. et al. Differential diagnosis of myopic choroidal neovascularization (mCNV): insights from multimodal imaging and treatment implications. Graefes Arch Clin Exp Ophthalmol (2023). https://doi.org/10.1007/s00417-023-06320-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-023-06320-w

Keywords

Navigation