Skip to main content
Log in

Amblyopia: progress and promise of functional magnetic resonance imaging

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia’s neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meier K, Giaschi D (2017) Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Invest Ophthalmol Vis Sci 58:1779–1800. https://doi.org/10.1167/iovs.16-20964

    Article  PubMed  Google Scholar 

  2. Liang M, Xie B, Yang H, Yu L, Yin X, Wei L, Wang J (2016) Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study. Graefes Arch Clin Exp Ophthalmol 254:569–576. https://doi.org/10.1007/s00417-015-3117-9

    Article  PubMed  Google Scholar 

  3. McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia. J Vis 3:380–405. https://doi.org/10.1167/3.5.5

    Article  PubMed  Google Scholar 

  4. Wallace DK, Repka MX, Lee KA, Melia M, Christiansen SP, Morse CL, Sprunger DT, American Academy of Pediatric Ophthalmology/Strabismus Preferred Practice Pattern Pediatric Ophthalmology P (2018) Amblyopia Preferred Practice Pattern(R). Ophthalmology 125:P105–P142. https://doi.org/10.1016/j.ophtha.2017.10.008

    Article  PubMed  Google Scholar 

  5. Huang D, Chen X, Zhu H, Ding H, Bai J, Chen J, Fu Z, Pan CW, Liu H (2018) Prevalence of amblyopia and its association with refraction in Chinese preschool children aged 36–48 months. Br J Ophthalmol 102:767–771. https://doi.org/10.1136/bjophthalmol-2016-310083

    Article  PubMed  Google Scholar 

  6. Maurer D, Mc KS (2018) Classification and diversity of amblyopia. Vis Neurosci 35:E012. https://doi.org/10.1017/S0952523817000190

    Article  PubMed  Google Scholar 

  7. Levi DM (2020) Rethinking amblyopia 2020. Vision Res 176:118–129. https://doi.org/10.1016/j.visres.2020.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Verghese P, McKee SP, Levi DM (2019) Attention deficits in amblyopia. Curr Opin Psychol 29:199–204. https://doi.org/10.1016/j.copsyc.2019.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kiorpes L, Daw N (2018) Cortical correlates of amblyopia. Vis Neurosci 35:E016. https://doi.org/10.1017/S0952523817000232

    Article  PubMed  Google Scholar 

  10. Mortazavi M, Aigner KM, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J (2021) Neural correlates of visual spatial selective attention are altered at early and late processing stages in human amblyopia. Eur J Neurosci 53:1086–1106. https://doi.org/10.1111/ejn.15024

    Article  CAS  PubMed  Google Scholar 

  11. Hamm LM, Black J, Dai S, Thompson B (2014) Global processing in amblyopia: a review. Front Psychol 5:583. https://doi.org/10.3389/fpsyg.2014.00583

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li C, Cheng L, Yu Q, Xie B, Wang J (2012) Relationship of visual cortex function and visual acuity in anisometropic amblyopic children. Int J Med Sci 9:115–120. https://doi.org/10.7150/ijms.9.115

    Article  PubMed  Google Scholar 

  13. Chan J, Hao X, Liu Q, Cang J, Gu Y (2021) Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex. Front Cell Neurosci 15:749265. https://doi.org/10.3389/fncel.2021.749265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen W, Wang Y, Zhou J, He S, Sun X, Liu H, Zhao C, Zhang P (2021) Loss and enhancement of layer-selective signals in geniculostriate and corticotectal pathways of adult human amblyopia. Cell Rep 37:110117. https://doi.org/10.1016/j.celrep.2021.110117

    Article  CAS  PubMed  Google Scholar 

  15. Gu Y, Cang J (2016) Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex. eLife 5:e2203. https://doi.org/10.7554/eLife.22032

  16. Wang BS, Sarnaik R, Cang J (2010) Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 65:246–256. https://doi.org/10.1016/j.neuron.2010.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol 26:978–993. https://doi.org/10.1152/jn.1963.26.6.978

    Article  CAS  PubMed  Google Scholar 

  18. Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409. https://doi.org/10.1098/rstb.1977.0050

    Article  CAS  PubMed  Google Scholar 

  19. Hubel DH, Livingstone MS (1990) Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. J Neurosci 10:2223–2237. https://doi.org/10.1523/jneurosci.10-07-02223.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240. https://doi.org/10.1113/jphysiol.1984.sp015498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arden GB, Vaegan HCR, Powell DJ, Carter RM (1980) Pattern ERGs are abnormal in many amblyopes. Trans Ophthalmol Soc U K 100:453–460

    CAS  PubMed  Google Scholar 

  22. Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29:1064–1070. https://doi.org/10.1111/j.1460-9568.2009.06650.x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miki A, Liu GT, Goldsmith ZG, Liu CS, Haselgrove JC (2003) Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica 217:365–369. https://doi.org/10.1159/000071353

    Article  PubMed  Google Scholar 

  24. von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol 12:727–738

    Google Scholar 

  25. Hensch TK, Quinlan EM (2018) Critical periods in amblyopia. Vis Neurosci 35:E014. https://doi.org/10.1017/S0952523817000219

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu KR, Yu YJ, Tang LY, Chen SY, Zhang MY, Sun T, Wu SN, Yu K, Li B, Shao Y (2020) Altered brain network centrality in patients with adult strabismus with amblyopia: a resting-state functional magnetic resonance imaging (fMRI) Study. Med Sci Monit 26:e925856. https://doi.org/10.12659/MSM.925856

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shao Y, Li QH, Li B, Lin Q, Su T, Shi WQ, Zhu PW, Yuan Q, Shu YQ, He Y, Liu WF, Ye L (2019) Altered brain activity in patients with strabismus and amblyopia detected by analysis of regional homogeneity: a resting-state functional magnetic resonance imaging study. Mol Med Rep 19:4832–4840. https://doi.org/10.3892/mmr.2019.10147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joly O, Franko E (2014) Neuroimaging of amblyopia and binocular vision: a review. Front Integr Neurosci 8:62. https://doi.org/10.3389/fnint.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pillai JJ (2010) The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol 31:219–225. https://doi.org/10.3174/ajnr.A1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buchbinder BR (2016) Functional magnetic resonance imaging. Handb Clin Neurol 135:61–92. https://doi.org/10.1016/B978-0-444-53485-9.00004-0

    Article  PubMed  Google Scholar 

  31. Dai P, Zhou X, Ou Y, Xiong T, Zhang J, Chen Z, Zou B, Wei X, Wu Y, Xiao M (2021) Altered effective connectivity of children and young adults with unilateral amblyopia: a resting-state functional magnetic resonance imaging Study. Front Neurosci 15:657576. https://doi.org/10.3389/fnins.2021.657576

    Article  PubMed  PubMed Central  Google Scholar 

  32. Min YL, Su T, Shu YQ, Liu WF, Chen LL, Shi WQ, Jiang N, Zhu PW, Yuan Q, Xu XW, Ye L, Shao Y (2018) Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat 14:2351–2359. https://doi.org/10.2147/NDT.S171462

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14:210–217. https://doi.org/10.1002/hbm.1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown HD, Woodall RL, Kitching RE, Baseler HA, Morland AB (2016) Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 36:240–265. https://doi.org/10.1111/opo.12293

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dai XJ, Liu CL, Zhou RL, Gong HH, Wu B, Gao L, Wang YX (2015) Long-term total sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study. Neuropsychiatr Dis Treat 11:761–772. https://doi.org/10.2147/NDT.S78335

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Cui D, Zheng L, Yang X, Yang H, Zeng J (2012) Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol Vis 18:909–919

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Janz C, Heinrich SP, Kornmayer J, Bach M, Hennig J (2001) Coupling of neural activity and BOLD fMRI response: new insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magn Reson Med 46:482–486. https://doi.org/10.1002/mrm.1217

    Article  CAS  PubMed  Google Scholar 

  38. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47. https://doi.org/10.1093/cercor/1.1.1-a

    Article  CAS  PubMed  Google Scholar 

  39. Levi DM (2013) Linking assumptions in amblyopia. Vis Neurosci 30:277–287. https://doi.org/10.1017/S0952523813000023

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kiorpes L (2006) Visual processing in amblyopia: animal studies. Strabismus 14:3–10. https://doi.org/10.1080/09273970500536193

    Article  PubMed  Google Scholar 

  41. Pinto JG, Jones DG, Williams CK, Murphy KM (2015) Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 9:3. https://doi.org/10.3389/fncir.2015.00003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Siu CR, Beshara SP, Jones DG, Murphy KM (2017) Development of glutamatergic proteins in human visual cortex across the lifespan. J Neurosci 37:6031–6042. https://doi.org/10.1523/JNEUROSCI.2304-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siu CR, Murphy KM (2018) The development of human visual cortex and clinical implications. Eye Brain 10:25–36. https://doi.org/10.2147/EB.S130893

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barnes GR, Hess RF, Dumoulin SO, Achtman RL, Pike GB (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol 533:281–297. https://doi.org/10.1111/j.1469-7793.2001.0281b.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R (2006) Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res 46:506–526. https://doi.org/10.1016/j.visres.2005.10.014

    Article  PubMed  Google Scholar 

  46. Majaj NJ, Carandini M, Movshon JA (2007) Motion integration by neurons in macaque MT is local, not global. J Neurosci 27:366–370. https://doi.org/10.1523/JNEUROSCI.3183-06.2007

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li X, Dumoulin SO, Mansouri B, Hess RF (2007) Cortical deficits in human amblyopia: their regional distribution and their relationship to the contrast detection deficit. Invest Ophthalmol Vis Sci 48:1575–1591. https://doi.org/10.1167/iovs.06-1021

    Article  PubMed  Google Scholar 

  48. Mizoguchi S, Suzuki Y, Kiyosawa M, Mochizuki M, Ishii K (2005) Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye. Graefes Arch Clin Exp Ophthalmol 243:576–582. https://doi.org/10.1007/s00417-004-1009-5

    Article  PubMed  Google Scholar 

  49. Conner IP, Odom JV, Schwartz TL, Mendola JD (2007) Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. J AAPOS 11:341–350. https://doi.org/10.1016/j.jaapos.2007.01.119

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li H, Yang X, Gong Q, Chen H, Liao M, Liu L (2013) BOLD responses to different temporospatial frequency stimuli in V1 and V2 visual cortex of anisometropic amblyopia. Eur J Ophthalmol 23:147–155. https://doi.org/10.5301/ejo.5000211

    Article  PubMed  Google Scholar 

  51. Bonhomme GR, Liu GT, Miki A, Francis E, Dobre MC, Modestino EJ, Aleman DO, Haselgrove JC (2006) Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. J AAPOS 10:540–546. https://doi.org/10.1016/j.jaapos.2006.07.008

    Article  PubMed  Google Scholar 

  52. Thompson B, Villeneuve MY, Casanova C, Hess RF (2012) Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI. Neuroimage 60:1307–1315. https://doi.org/10.1016/j.neuroimage.2012.01.078

    Article  CAS  PubMed  Google Scholar 

  53. Liang M, Xiao H, Xie B, Yin X, Wang J, Yang H (2019) Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC Neurosci 20:39. https://doi.org/10.1186/s12868-019-0524-6

    Article  PubMed  PubMed Central  Google Scholar 

  54. Secen J, Culham J, Ho C, Giaschi D (2011) Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Res 51:2517–2527. https://doi.org/10.1016/j.visres.2011.10.011

    Article  PubMed  Google Scholar 

  55. Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci 51:1432–1438. https://doi.org/10.1167/iovs.09-3931

    Article  PubMed  Google Scholar 

  56. Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, Odom JV, Kwong KK (2005) Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp 25:222–236. https://doi.org/10.1002/hbm.20109

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xiao JX, Xie S, Ye JT, Liu HH, Gan XL, Gong GL, Jiang XX (2007) Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J Ophthalmol 143:489–493. https://doi.org/10.1016/j.ajo.2006.11.039

    Article  PubMed  Google Scholar 

  58. Duan Y, Norcia AM, Yeatman JD, Mezer A (2015) The structural properties of major white matter tracts in strabismic amblyopia. Invest Ophthalmol Vis Sci 56:5152–5160. https://doi.org/10.1167/iovs.15-17097

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li Q, Jiang Q, Guo M, Li Q, Cai C, Yin X (2013) Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study. Br J Ophthalmol 97:524–529. https://doi.org/10.1136/bjophthalmol-2012-302218

    Article  PubMed  Google Scholar 

  60. Tsai TH, Su HT, Hsu YC, Shih YC, Chen CC, Hu FR, Tseng WI (2019) White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis. Br J Ophthalmol 103:511–516. https://doi.org/10.1136/bjophthalmol-2017-311733

    Article  PubMed  Google Scholar 

  61. Allen B, Spiegel DP, Thompson B, Pestilli F, Rokers B (2015) Altered white matter in early visual pathways of humans with amblyopia. Vision Res 114:48–55. https://doi.org/10.1016/j.visres.2014.12.021

    Article  PubMed  Google Scholar 

  62. Wu Y, Liu LQ (2017) Research advances on cortical functional and structural deficits of amblyopia. Zhonghua Yan Ke Za Zhi 53:392–395. https://doi.org/10.3760/cma.j.issn.0412-4081.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  63. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003

    Article  CAS  PubMed  Google Scholar 

  64. Gotou T, Kameyama K, Kobayashi A, Okamura K, Ando T, Terata K, Yamada C, Ohta H, Morizane A, Hata Y (2021) Dark rearing promotes the recovery of visual cortical responses but not the morphology of geniculocortical axons in amblyopic cat. Front Neural Circuits 15:637638. https://doi.org/10.3389/fncir.2021.637638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng J, Yao F, Li Q, Ge Q, Shi W, Su T, Tang L, Pan Y, Liang R, Zhang L, Shao Y (2021) Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study. Sci Rep 11:15059. https://doi.org/10.1038/s41598-021-92281-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kozma P, Kiorpes L (2003) Contour integration in amblyopic monkeys. Vis Neurosci 20:577–588. https://doi.org/10.1017/s0952523803205113

    Article  PubMed  Google Scholar 

  67. Tao X, Zhang B, Shen G, Wensveen J, Smith EL 3rd, Nishimoto S, Ohzawa I, Chino YM (2014) Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys. J Neurosci 34:13840–13854. https://doi.org/10.1523/JNEUROSCI.1992-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bi H, Zhang B, Tao X, Harwerth RS, Smith EL 3rd, Chino YM (2011) Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex 21:2033–2045. https://doi.org/10.1093/cercor/bhq272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia-Marin V, Kelly JG, Majaj NJ, Movshon JA, Kiorpes L (2015) Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Res 114:56–67. https://doi.org/10.1016/j.visres.2015.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  70. El-Shamayleh Y, Kiorpes L, Kohn A, Movshon JA (2010) Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. J Neurosci 30:12198–12209. https://doi.org/10.1523/JNEUROSCI.3055-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Algaze A, Roberts C, Leguire L, Schmalbrock P, Rogers G (2002) Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study. J AAPOS 6:300–308. https://doi.org/10.1067/mpa.2002.124902

    Article  PubMed  Google Scholar 

  72. Talebnejad MR, Hosseinmenni S, Jafarzadehpur E, Mirzajani A, Osroosh E (2016) Comparison of the wave amplitude of visually evoked potential in amblyopic eyes between patients with esotropia and anisometropia and a normal group. Iran J Med Sci 41:94–101

    PubMed  Google Scholar 

  73. Perez-Rico C, Garcia-Romo E, Gros-Otero J, Roldan-Diaz I, Arevalo-Serrano J, Germain F, Blanco R (2015) Evaluation of visual function and retinal structure in adult amblyopes. Optom Vis Sci 92:375–383. https://doi.org/10.1097/OPX.0000000000000492

    Article  PubMed  Google Scholar 

  74. Miller NP, Aldred B, Schmitt MA, Rokers B (2020) Impact of amblyopia on the central nervous system. Journal of binocular vision and ocular motility 70:182–192. https://doi.org/10.1080/2576117X.2020.1841710

    Article  PubMed  Google Scholar 

  75. Lerner Y, Hendler T, Malach R, Harel M, Leiba H, Stolovitch C, Pianka P (2006) Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. Neuroimage 33:169–179. https://doi.org/10.1016/j.neuroimage.2006.06.026

    Article  CAS  PubMed  Google Scholar 

  76. Chadnova E, Reynaud A, Clavagnier S, Hess RF (2017) Latent binocular function in amblyopia. Vision Res 140:73–80. https://doi.org/10.1016/j.visres.2017.07.014

    Article  PubMed  Google Scholar 

  77. Levi DM, Li RW, Klein SA (2005) “Phase capture” in amblyopia: the influence function for sampled shape. Vision Res 45:1793–1805. https://doi.org/10.1016/j.visres.2005.01.021

    Article  PubMed  Google Scholar 

  78. Bonneh YS, Sagi D, Polat U (2007) Spatial and temporal crowding in amblyopia. Vision Res 47:1950–1962. https://doi.org/10.1016/j.visres.2007.02.015

    Article  PubMed  Google Scholar 

  79. Levi DM, Knill DC, Bavelier D (2015) Stereopsis and amblyopia: a mini-review. Vision Res 114:17–30. https://doi.org/10.1016/j.visres.2015.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hu X, Qin Y, Ying X, Yuan J, Cui R, Ruan X, He X, Lu ZL, Lu F, Hou F (2021) Temporal characteristics of visual processing in amblyopia. Front Neurosci 15:673491. https://doi.org/10.3389/fnins.2021.673491

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yen CC, Fukuda M, Kim SG (2011) BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: insights into the neural basis of fMRI. Neuroimage 58:82–90. https://doi.org/10.1016/j.neuroimage.2011.06.022

    Article  PubMed  Google Scholar 

  82. Lu Z, Huang Y, Lu Q, Feng L, Nguchu BA, Wang Y, Wang H, Li G, Zhou Y, Qiu B, Zhou J, Wang X (2019) Abnormal intra-network architecture in extra-striate cortices in amblyopia: a resting state fMRI study. Eye Vis (Lond) 6:20. https://doi.org/10.1186/s40662-019-0145-2

    Article  PubMed  Google Scholar 

  83. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442. https://doi.org/10.1016/j.tins.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding K, Liu Y, Yan X, Lin X, Jiang T (2013) Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural Plast 2013:612086. https://doi.org/10.1155/2013/612086

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C (2014) Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 1563:41–51. https://doi.org/10.1016/j.brainres.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  86. Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A (2018) Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. Neuroimage Clin 18:192–201. https://doi.org/10.1016/j.nicl.2018.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043. https://doi.org/10.1523/JNEUROSCI.2612-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang S, Gao GP, Shi WQ, Li B, Lin Q, Shu HY, Shao Y (2021) Abnormal interhemispheric functional connectivity in patients with strabismic amblyopia: a resting-state fMRI study using voxel-mirrored homotopic connectivity. BMC Ophthalmol 21:255. https://doi.org/10.1186/s12886-021-02015-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. https://doi.org/10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  90. Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ (2018) Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol (Seoul, Korea) 14:129–140. https://doi.org/10.3988/jcn.2018.14.2.129

    Article  Google Scholar 

  91. Baroncelli L, Lunghi C (2021) Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol 335:113515. https://doi.org/10.1016/j.expneurol.2020.113515

    Article  PubMed  Google Scholar 

  92. Lin X, Ding K, Liu Y, Yan X, Song S, Jiang T (2012) Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI. PLoS One 7:e43373. https://doi.org/10.1371/journal.pone.0043373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dai P, Zhang J, Wu J, Chen Z, Zou B, Wu Y, Wei X, Xiao M (2019) Altered spontaneous brain activity of children with unilateral amblyopia: A Resting State fMRI Study. Neural Plast 2019:3681430. https://doi.org/10.1155/2019/3681430

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leguire LE, Algaze A, Kashou NH, Lewis J, Rogers GL, Roberts C (2011) Relationship among fMRI, contrast sensitivity and visual acuity. Brain Res 1367:162–169. https://doi.org/10.1016/j.brainres.2010.10.082

    Article  CAS  PubMed  Google Scholar 

  95. Goodyear BG, Nicolle DA, Humphrey GK, Menon RS (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913. https://doi.org/10.1152/jn.2000.84.4.1907

    Article  CAS  PubMed  Google Scholar 

  96. Yang X, Lu L, Li Q, Huang X, Gong Q, Liu L (2019) Altered spontaneous brain activity in patients with strabismic amblyopia: a resting-state fMRI study using regional homogeneity analysis. Exp Ther Med 18:3877–3884. https://doi.org/10.3892/etm.2019.8038

    Article  PubMed  PubMed Central  Google Scholar 

  97. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013) The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463–473. https://doi.org/10.1016/j.neuroimage.2013.04.013

    Article  PubMed  Google Scholar 

  99. Kiviniemi V, Kantola JH, Jauhiainen J, Tervonen O (2004) Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI. Magn Reson Imaging 22:197–203. https://doi.org/10.1016/j.mri.2003.09.007

    Article  PubMed  Google Scholar 

  100. Simmers AJ, Ledgeway T, Hess RF, McGraw PV (2003) Deficits to global motion processing in human amblyopia. Vision Res 43:729–738. https://doi.org/10.1016/s0042-6989(02)00684-3

    Article  PubMed  Google Scholar 

  101. Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723. https://doi.org/10.1038/76673

    Article  CAS  PubMed  Google Scholar 

  102. Kourtzi Z, Bulthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5:17–18. https://doi.org/10.1038/nn780

    Article  CAS  PubMed  Google Scholar 

  103. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872. https://doi.org/10.1073/pnas.87.24.9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141. https://doi.org/10.1038/375139a0

    Article  CAS  PubMed  Google Scholar 

  106. Ho CS, Giaschi DE, Boden C, Dougherty R, Cline R, Lyons C (2005) Deficient motion perception in the fellow eye of amblyopic children. Vision Res 45:1615–1627. https://doi.org/10.1016/j.visres.2004.12.009

    Article  PubMed  Google Scholar 

  107. Ho CS, Giaschi DE (2009) Low- and high-level motion perception deficits in anisometropic and strabismic amblyopia: evidence from fMRI. Vision Res 49:2891–2901. https://doi.org/10.1016/j.visres.2009.07.012

    Article  PubMed  Google Scholar 

  108. Vedamurthy I, Suttle CM, Alexander J, Asper LJ (2008) A psychophysical study of human binocular interactions in normal and amblyopic visual systems. Vision Res 48:1522–1531. https://doi.org/10.1016/j.visres.2008.04.004

    Article  PubMed  Google Scholar 

  109. Liang M, Xie B, Yang H, Yin X, Wang H, Yu L, He S, Wang J (2017) Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study. Neuroradiology 59:517–524. https://doi.org/10.1007/s00234-017-1824-0

    Article  PubMed  Google Scholar 

  110. McKee SP, Schor CM, Steinman SB, Wilson N, Koch GG, Davis SM, Hsu-Winges C, Day SH, Chan CL, Movshon JA et al (1992) The classification of amblyopia on the basis of visual and oculomotor performance. Trans Am Ophthalmol Soc 90:123–144 (discussion 145-128)

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Crawford ML, von Noorden GK (1979) The effects of short-term experimental strabismus on the visual system in Macaca mulatta. Invest Ophthalmol Vis Sci 18:496–505

    CAS  PubMed  Google Scholar 

  113. Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Harrad R, Sengpiel F, Blakemore C (1996) Physiology of suppression in strabismic amblyopia. Br J Ophthalmol 80:373–377. https://doi.org/10.1136/bjo.80.4.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591. https://doi.org/10.1038/299583a0

    Article  CAS  PubMed  Google Scholar 

  116. Kiorpes L, Boothe RG, Hendrickson AE, Movshon JA, Eggers HM, Gizzi MS (1987) Effects of early unilateral blur on the macaque’s visual system. I. Behavioral observations. J Neurosci 7:1318–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Movshon JA, Eggers HM, Gizzi MS, Hendrickson AE, Kiorpes L, Boothe RG (1987) Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations. J Neurosci 7:1340–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Arch 377:201–207. https://doi.org/10.1007/BF00584273

    Article  CAS  PubMed  Google Scholar 

  119. Lee KM, Lee SH, Kim NY, Kim CY, Sohn JW, Choi MY, Gyu Choi D, Hwang JM, Ho Park K, Lee DS, Suk YuY, Hyun Chang K (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153. https://doi.org/10.1016/s0168-0102(01)00220-6

    Article  CAS  PubMed  Google Scholar 

  120. Choi MY, Lee KM, Hwang JM, Choi DG, Lee DS, Park KH, Yu YS (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056. https://doi.org/10.1136/bjo.85.9.1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huang C, Tao L, Zhou Y, Lu ZL (2007) Treated amblyopes remain deficient in spatial vision: a contrast sensitivity and external noise study. Vision Res 47:22–34. https://doi.org/10.1016/j.visres.2006.09.015

    Article  PubMed  Google Scholar 

  122. Spiegel DP, Byblow WD, Hess RF, Thompson B (2013) Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehab Neural Repair 27:760–769. https://doi.org/10.1177/1545968313491006

    Article  Google Scholar 

  123. Zhai J, Chen M, Liu L, Zhao X, Zhang H, Luo X, Gao J (2013) Perceptual learning treatment in patients with anisometropic amblyopia: a neuroimaging study. Br J Ophthalmol 97:1420–1424. https://doi.org/10.1136/bjophthalmol-2013-303778

    Article  PubMed  Google Scholar 

  124. Gupta S, Kumaran SS, Saxena R, Gudwani S, Menon V, Sharma P (2016) BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy. Int Ophthalmol 36:557–568. https://doi.org/10.1007/s10792-015-0159-2

    Article  PubMed  Google Scholar 

  125. Halicka J, Bittsansky M, Sivak S, Pinero DP, Ziak P (2021) Virtual reality visual training in an adult patient with anisometropic amblyopia: visual and functional magnetic resonance outcomes. Vision (Basel) 5(2):22. https://doi.org/10.3390/vision5020022

  126. Tailor V, Bossi M, Greenwood JA, Dahlmann-Noor A (2016) Childhood amblyopia: current management and new trends. Br Med Bull 119:75–86. https://doi.org/10.1093/bmb/ldw030

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chen CW, Zhu Q, Duan YB, Yao JY (2021) Comparison between binocular therapy and patching for treatment of amblyopia: a meta-analysis of randomised controlled trials. BMJ Open Ophthalmol 6:e000625. https://doi.org/10.1136/bmjophth-2020-000625

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sen S, Singh P, Saxena R (2021) Management of amblyopia in pediatric patients: current insights. Eye (Lond). https://doi.org/10.1038/s41433-021-01669-w

    Article  PubMed  Google Scholar 

  129. Singh A, Nagpal R, Mittal SK, Bahuguna C, Kumar P (2017) Pharmacological therapy for amblyopia. Taiwan J Ophthalmol 7:62–69. https://doi.org/10.4103/tjo.tjo_8_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Repka MX, Beck RW, Holmes JM, Birch EE, Chandler DL, Cotter SA, Hertle RW, Kraker RT, Moke PS, Quinn GE, Scheiman MM, Pediatric Eye Disease Investigator G (2003) A randomized trial of patching regimens for treatment of moderate amblyopia in children. Arch Ophthalmol 121:603–611. https://doi.org/10.1001/archopht.121.5.603

    Article  PubMed  Google Scholar 

  131. Farvardin M, Khalili MR, Behnia M (2019) Levodopa plus occlusion therapy versus occlusion therapy alone for children with anisometropic amblyopia. J Ophthalmic Vis Res 14:457–464. https://doi.org/10.18502/jovr.v14i4.5451

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bhartiya P, Sharma P, Biswas NR, Tandon R, Khokhar SK (2002) Levodopa-carbidopa with occlusion in older children with amblyopia. J AAPOS 6:368–372. https://doi.org/10.1067/mpa.2002.129043

    Article  PubMed  Google Scholar 

  133. LeWitt PA (2016) New levodopa therapeutic strategies. Parkinsonism Relat Disord 22(Suppl 1):S37-40. https://doi.org/10.1016/j.parkreldis.2015.09.021

    Article  PubMed  Google Scholar 

  134. Gottlob I, Stangler-Zuschrott E (1990) Effect of levodopa on contrast sensitivity and scotomas in human amblyopia. Invest Ophthalmol Vis Sci 31:776–780

    CAS  PubMed  Google Scholar 

  135. Algaze A, Leguire LE, Roberts C, Ibinson JW, Lewis JR, Rogers G (2005) The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot study. J AAPOS 9:216–223. https://doi.org/10.1016/j.jaapos.2005.01.014

    Article  PubMed  Google Scholar 

  136. Goodyear BG, Nicolle DA, Menon RS (2002) High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus 10:129–136. https://doi.org/10.1076/stra.10.2.129.8140

    Article  PubMed  Google Scholar 

  137. Yang C-I, Yang M-L, Huang J-C, Wan Y-L, Jui-Fang Tsai R, Wai Y-Y, Liu H-L (2003) Functional MRI of amblyopia before and after levodopa. Neurosci Lett 339:49–52. https://doi.org/10.1016/s0304-3940(02)01465-9

    Article  CAS  PubMed  Google Scholar 

  138. Rogers GL (2003) Functional magnetic resonance imaging (fMRI) and effects of L-dopa on visual function in normal and amblyopic subjects. Trans Am Ophthalmol Soc 101:401–415

    PubMed  PubMed Central  Google Scholar 

  139. Lu W, Yu X, Zhao L, Zhang Y, Zhao F, Wang Y, Qiu J (2020) Enhanced gray matter volume compensates for decreased brain activity in the ocular motor area in children with anisometropic amblyopia. Neural Plast 2020:8060869. https://doi.org/10.1155/2020/8060869

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number 82070996).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Guiqu Wang, and Longqian Liu commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Longqian Liu.

Ethics declarations

Ethics approval

Formal consent is not required for this type of study (review article). This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article received support from the mentorship team. Further information can be found in the editorial https://link.springer.com/article/10.1007s00417-019–04518-5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liu, L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 261, 1229–1246 (2023). https://doi.org/10.1007/s00417-022-05826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05826-z

Keywords

Navigation