Skip to main content

Advertisement

Log in

Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To detect the altered spontaneous brain activity patterns in children and adults with anisometropic amblyopia using resting-state functional magnetic resonance imaging (rs-fMRI) technique combined with the amplitude of low-frequency fluctuation (ALFF) method.

Methods

Thirty-two monocular anisometropic amblyopia and 34 normal-sight controls were divided into child group and adult group. Rs-fMRI was performed in all participants and analysis of ALFF value within the whole brain was conducted in each subject. ALFF value differences between the patients and controls in the two groups were compared via an independent two-sample t test.

Results

The amblyopic children mainly exhibited increased ALFF in part of the bilateral calcarine (BA17), the left middle occipital gyrus (BA18/19), and the left postcentral gyrus (BA2). By contrast, the amblyopic adults showed decreased ALFF in the bilateral precuneus cortex (part of BA7), and the standardized ALFF value of bilateral precuneus were correlated with the amount of anisometropia of the amblyopic adults.

Conclusions

Rs-fMRI is an effective noninvasive technique for exploring brain activity of the anisometropic amblyopia. Our findings demonstrated that brain activity changed both in amblyopic children and adults under the resting state, and revealed the differences in spontaneous activity patterns between the amblyopic children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

fMRI:

Functional magnetic resonance imaging

rs-fMRI:

Resting-state functional magnetic resonance imaging

BOLD:

Blood oxygenation level dependent

ALFF:

Amplitude of low-frequency fluctuation

ReHo:

Regional homogeneity

BA:

Brodmann area

References

  1. McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia. J Vis 3:380–405. doi:10.1167/3.5.5

    Article  PubMed  Google Scholar 

  2. Birch EE (2013) Amblyopia and binocular vision. Prog Retin Eye Res 33:67–84. doi:10.1016/j.preteyeres.2012.11.001

    Article  PubMed Central  PubMed  Google Scholar 

  3. West S, Williams C (2011) Amblyopia. BMJ Clin Evid Jun 30. pii: 0709

  4. Holmes JM, Lazar EL, Melia BM, Astle WF, Dagi LR, Donahue SP, Frazier MG, Hertle RW, Repka MX, Quinn GE, Weise KK, Pediatric Eye Disease Investigator G (2011) Effect of age on response to amblyopia treatment in children. Arch Ophthalmol 129:1451–1457. doi:10.1001/archophthalmol.2011.179

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, Odom JV, Kwong KK (2005) Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp 25:222–236. doi:10.1002/hbm.20109

    Article  PubMed  Google Scholar 

  6. Xiao JX, Xie S, Ye JT, Liu HH, Gan XL, Gong GL, Jiang XX (2007) Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J Ophthalmol 143:489–493. doi:10.1016/j.ajo.2006.11.039

    Article  PubMed  Google Scholar 

  7. Du H, Xie B, Yu Q, Wang J (2009) Occipital lobe’s cortical thinning in ametropic amblyopia. Magn Reson Imaging 27:637–640. doi:10.1016/j.mri.2008.10.009

    Article  PubMed  Google Scholar 

  8. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29:1064–1070. doi:10.1111/j.1460-9568.2009.06650.x

    Article  PubMed Central  PubMed  Google Scholar 

  10. Thompson B, Villeneuve MY, Casanova C, Hess RF (2012) Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI. NeuroImage 60:1307–1315. doi:10.1016/j.neuroimage.2012.01.078

    Article  CAS  PubMed  Google Scholar 

  11. Conner IP, Odom JV, Schwartz TL, Mendola JD (2007) Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults. J Physiol 583:159–173. doi:10.1113/jphysiol.2007.136242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Med: Off J Soc Magnetic Resonance Med/Soc Magnetic Resonance in Med 34:537–541

    Article  CAS  Google Scholar 

  13. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21:1636–1644

    CAS  PubMed  Google Scholar 

  14. Kiviniemi V, Kantola JH, Jauhiainen J, Tervonen O (2004) Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI. Magn Reson Imaging 22:197–203. doi:10.1016/j.mri.2003.09.007

    Article  PubMed  Google Scholar 

  15. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141. doi:10.1002/hbm.20737

    Article  PubMed  Google Scholar 

  16. Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013) The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78:463–473. doi:10.1016/j.neuroimage.2013.04.013

    Article  PubMed Central  PubMed  Google Scholar 

  17. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853. doi:10.1073/pnas.0601417103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Qin W, Jiang T, Li K (2008) Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp 29:533–543. doi:10.1002/hbm.20420

    Article  PubMed  Google Scholar 

  19. Ding K, Liu Y, Yan X, Lin X, Jiang T (2013) Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural Plasticity 2013:612086. doi:10.1155/2013/612086

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lin X, Ding K, Liu Y, Yan X, Song S, Jiang T (2012) Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI. PLoS One 7, e43373. doi:10.1371/journal.pone.0043373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C (2014) Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 1563:41–51. doi:10.1016/j.brainres.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  22. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91. doi:10.1016/j.braindev.2006.07.002

    Article  PubMed  Google Scholar 

  23. Bing X, Ming-Guo Q, Ye Z, Jing-Na Z, Min L, Han C, Yu Z, Jia-Jia Z, Jian W, Wei C, Han-Jian D, Shao-Xiang Z (2013) Alterations in the cortical thickness and the amplitude of low-frequency fluctuation in patients with post-traumatic stress disorder. Brain Res 1490:225–232. doi:10.1016/j.brainres.2012.10.048

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y, Jiao Y, Chen YC, Wang K, Gao B, Wen S, Ju S, Teng GJ (2014) Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes 63:749–760. doi:10.2337/db13-0519

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Yan C, Zhao C, Qi Z, Zhou W, Lu J, He Y, Li K (2011) Spatial patterns of intrinsic brain activity in mild cognitive impairment and Alzheimer’s disease: a resting-state functional MRI study. Hum Brain Mapp 32:1720–1740. doi:10.1002/hbm.21140

    Article  PubMed  Google Scholar 

  26. Yan L, Zhuo Y, Wang B, Wang DJ (2011) Loss of coherence of low-frequency fluctuations of BOLD FMRI in visual cortex of healthy aged subjects. Open Neuroimaging J 5:105–111. doi:10.2174/1874440001105010105

    Article  Google Scholar 

  27. Society CO (2011) Expert consensus on amblyopia diagnosis (2011). Chinese J Ophthalmol 47:768

    Google Scholar 

  28. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13. doi:10.3389/fnsys.2010.00013

    PubMed Central  PubMed  Google Scholar 

  29. Han Y, Lui S, Kuang W, Lang Q, Zou L, Jia J (2012) Anatomical and functional deficits in patients with amnestic mild cognitive impairment. PLoS One 7, e28664. doi:10.1371/journal.pone.0028664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6, e25031. doi:10.1371/journal.pone.0025031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Li C, Cheng L, Yu Q, Xie B, Wang J (2012) Relationship of visual cortex function and visual acuity in anisometropic amblyopic children. Int J Med Sci 9:115–120

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wang X, Cui D, Zheng L, Yang X, Yang H, Zeng J (2012) Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol Vis 18:909–919

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Barrett BT, Bradley A, Candy TR (2013) The relationship between anisometropia and amblyopia. Prog Retin Eye Res 36:120–158. doi:10.1016/j.preteyeres.2013.05.001

    Article  PubMed Central  PubMed  Google Scholar 

  34. Negyessy L, Nepusz T, Kocsis L, Bazso F (2006) Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis. Eur J Neurosci 23:1919–1930. doi:10.1111/j.1460-9568.2006.04678.x

    Article  PubMed  Google Scholar 

  35. Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR (2005) Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8:941–949. doi:10.1038/nn1480

    Article  CAS  PubMed  Google Scholar 

  36. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain: J Neurol 129:564–583. doi:10.1093/brain/awl004

    Article  Google Scholar 

  37. Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R (2006) Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vis Res 46:506–526. doi:10.1016/j.visres.2005.10.014

    Article  PubMed  Google Scholar 

  38. Grant S, Melmoth DR, Morgan MJ, Finlay AL (2007) Prehension deficits in amblyopia. Invest Ophthalmol Vis Sci 48:1139–1148. doi:10.1167/iovs.06-0976

    Article  PubMed  Google Scholar 

  39. Lerner Y, Hendler T, Malach R, Harel M, Leiba H, Stolovitch C, Pianka P (2006) Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. NeuroImage 33:169–179. doi:10.1016/j.neuroimage.2006.06.026

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We certify that all authors have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

Minglong Liang and Bing Xie are Co-first Author

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(GIF 934 kb)

(TIFF 1940 kb)

Supplemental Figure 2

(GIF 1099 kb)

(TIFF 1766 kb)

Supplemental Figure 3

(GIF 1237 kb)

(TIFF 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Xie, B., Yang, H. et al. Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study. Graefes Arch Clin Exp Ophthalmol 254, 569–576 (2016). https://doi.org/10.1007/s00417-015-3117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3117-9

Keywords

Navigation