Skip to main content

Advertisement

Log in

Association of lens density quantified by IOLMaster 700 with lenticular myopia in nuclear cataract

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract 

Purpose

To explore the associated ocular parameters with lenticular myopia and assess the correlation between lens density and myopic shift.

Methods

This retrospective cross-sectional study enrolled 50 patients with lenticular high myopia as the study group and 85 cases as the validation group. Lens density was obtained through swept-source optical coherence tomography (SS-OCT, IOLMaster 700) and measured by Image J software. Linear regression analysis and correlation analysis were applied to study the association between lenticular myopia and ocular variables. Receiver operating characteristic curves and calibration charts were plotted for nuclear density (ND) in identifying lenticular high myopia.

Results

Both ND and lens thickness were discovered to be associated with spherical equivalent refraction and lens power (p < 0.05); yet, only ND was significantly correlated with lenticular myopia, as the difference of nuclear density (NDdiff) between the lenticular myopic eye and the fellow eye was significantly correlated with the interocular difference of spherical equivalent refraction (SERdiff, r =  − 0.752, p < 0.001) and the interocular difference of lens power (LPdiff, r = 0.834, p < 0.001). The ND is a good metric for diagnosing lenticular high myopia, with the area under curve (AUC) being 0.898 (0.821–0.949) and the cut-off value being 98.88 pixel units. The accuracy of the cut-off value in the validation group was 82.35%.

Conclusions

Average ND quantified by IOLMaster 700 is not only associated with lenticular myopia but is a suitable metric for predicting the amount of myopic shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source optical coherence tomography

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379(9827):1739–1748. https://doi.org/10.1016/S0140-6736(12)60272-4

    Article  PubMed  Google Scholar 

  2. Meng W, Butterworth J, Malecaze F, Calvas P (2011) Axial length of myopia: a review of current research. Ophthalmologica 225(3):127–134. https://doi.org/10.1159/000317072

    Article  PubMed  Google Scholar 

  3. Gordon-Shaag A, Millodot M, Shneor E, Liu Y (2015) The genetic and environmental factors for keratoconus. Biomed Res Int 2015:795738. https://doi.org/10.1155/2015/795738

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baird PN, Saw SM, Lanca C, Guggenheim JA, Smith Iii EL, Zhou X, Matsui KO, Wu PC, Sankaridurg P, Chia A, Rosman M, Lamoureux EL, Man R, He M (2020) Myopia. Nat Rev Dis Primers 6(1):99. https://doi.org/10.1038/s41572-020-00231-4

    Article  PubMed  Google Scholar 

  5. Iribarren R, Morgan IG, Nangia V, Jonas JB (2012) Crystalline lens power and refractive error. Invest Ophthalmol Vis Sci 53(2):543–550. https://doi.org/10.1167/iovs.11-8523

    Article  PubMed  Google Scholar 

  6. Eifrig DE (1994) Identifying oil-drop cataracts. J Cataract Refract Surg 20(1):105–106. https://doi.org/10.1016/s0886-3350(13)80057-0

    Article  CAS  PubMed  Google Scholar 

  7. Cho YK, Huang W, Nishimura E (2013) Myopic refractive shift represents dense nuclear sclerosis and thin lens in lenticular myopia. Clin Exp Optom 96(5):479–485. https://doi.org/10.1111/cxo.12064

    Article  PubMed  Google Scholar 

  8. Magalhães FP, Costa EF, Cariello AJ, Rodrigues EB, Hofling-Lima AL (2011) Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software. Arq Bras Oftalmol 74(2):110–113. https://doi.org/10.1590/s0004-27492011000200008

    Article  PubMed  Google Scholar 

  9. Chen D, Li Z, Huang J, Yu L, Liu S, Zhao YE (2019) Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. Br J Ophthalmol 103(8):1048–1053. https://doi.org/10.1136/bjophthalmol-2018-312661

    Article  PubMed  Google Scholar 

  10. McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, Guo Y, Huang J (2017) Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol 173:64–69. https://doi.org/10.1016/j.ajo.2016.09.019

    Article  PubMed  Google Scholar 

  11. Gilmartin B (2004) Myopia: precedents for research in the twenty-first century. Clin Exp Ophthalmol 32(3):305–324. https://doi.org/10.1111/j.1442-9071.2004.00831.x

    Article  PubMed  Google Scholar 

  12. Levin ML (1989) Opalescent nuclear cataract. J Cataract Refract Surg 15(5):576–579. https://doi.org/10.1016/s0886-3350(89)80120-8

    Article  CAS  PubMed  Google Scholar 

  13. Zheng F, Yu M, Leung CK (2020) Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma. Br J Ophthalmol 104(2):270–275. https://doi.org/10.1136/bjophthalmol-2018-313581

    Article  PubMed  Google Scholar 

  14. He J, Lu L, He X, Xu X, Du X, Zhang B, Zhao H, Sha J, Zhu J, Zou H, Xu X (2017) The relationship between crystalline lens power and refractive error in older Chinese adults: the Shanghai Eye Study. PLoS One 12(1):e0170030. https://doi.org/10.1371/journal.pone.0170030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rozema JJ, Atchison DA, Tassignon MJ (2011) Comparing methods to estimate the human lens power. Invest Ophthalmol Vis Sci 52(11):7937–7942. https://doi.org/10.1167/iovs.11-7899

    Article  PubMed  Google Scholar 

  16. Qian W, Söderberg PG, Chen E, Magnius K, Philipson B (1993) A common lens nuclear area in Scheimpflug photographs. Eye (Lond) 7(Pt 6):799–804. https://doi.org/10.1038/eye.1993.187

    Article  Google Scholar 

  17. Panthier C, Burgos J, Rouger H, Saad A, Gatinel D (2017) New objective lens density quantification method using swept-source optical coherence tomography technology: Comparison with existing methods. J Cataract Refract Surg 43(12):1575–1581. https://doi.org/10.1016/j.jcrs.2017.09.028

    Article  PubMed  Google Scholar 

  18. Brás JEG, Sickenberger W, Hirnschall N, Findl O (2018) Cataract quantification using swept-source optical coherence tomography. J Cataract Refract Surg 44(12):1478–1481. https://doi.org/10.1016/j.jcrs.2018.08.009

    Article  PubMed  Google Scholar 

  19. Grewal DS, Brar GS, Grewal SP (2009) Correlation of nuclear cataract lens density using Scheimpflug images with Lens Opacities Classification System III and visual function. Ophthalmology 116(8):1436–1443. https://doi.org/10.1016/j.ophtha.2009.03.002

    Article  PubMed  Google Scholar 

  20. Makhotkina NY, Berendschot TTJM, van den Biggelaar FJHM, Weik ARH, Nuijts RMMA (2018) Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol 96(4):356–363. https://doi.org/10.1111/aos.13694

    Article  PubMed  Google Scholar 

  21. Aly MG, Shams A, Fouad YA, Hamza I (2019) Effect of lens thickness and nuclear density on the amount of laser fragmentation energy delivered during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 45(4):485–489. https://doi.org/10.1016/j.jcrs.2018.11.014

    Article  PubMed  Google Scholar 

  22. Henriquez MA, Mejías JA, Rincon M, Izquierdo L Jr, Binder PS (2020) Correlation between lens thickness and lens density in patients with mild to moderate cataracts. Br J Ophthalmol 104(10):1350–1357. https://doi.org/10.1136/bjophthalmol-2019-314171

    Article  PubMed  Google Scholar 

  23. Panthier C, de Wazieres A, Rouger H, Moran S, Saad A, Gatinel D (2019) Average lens density quantification with swept-source optical coherence tomography: optimized, automated cataract grading technique. J Cataract Refract Surg 45(12):1746–1752. https://doi.org/10.1016/j.jcrs.2019.07.033

    Article  PubMed  Google Scholar 

  24. Cheng T, Deng J, Xiong S, Yu S, Zhang B, Wang J, Gong W, Zhao H, Luan M, Zhu M, Zhu J, Zou H, Xu X, He X, Xu X (2021) Crystalline lens power and associated factors in highly myopic children and adolescents aged 4 to 19 years. Am J Ophthalmol 223:169–177. https://doi.org/10.1016/j.ajo.2020.07.007

    Article  PubMed  Google Scholar 

  25. Savini G, Hoffer KJ, Schiano-Lomoriello D (2018) Agreement between lens thickness measurements by ultrasound immersion biometry and optical biometry. J Cataract Refract Surg 44(12):1463–1468. https://doi.org/10.1016/j.jcrs.2018.07.057

    Article  PubMed  Google Scholar 

  26. Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, Tañá-Rivero P (2021) Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg 47(6):802–814. https://doi.org/10.1097/j.jcrs.0000000000000551

    Article  PubMed  Google Scholar 

  27. Soong HK, Dastjerdi MH (2004) Lenticular myopia from oil-drop cataract: a cautionary note in laser in situ keratomileusis. J Cataract Refract Surg 30(11):2438–2440. https://doi.org/10.1016/j.jcrs.2004.05.026

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by Jiangsu Provincial Medical Innovation Team, grant number CXTDA2017039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peirong Lu.

Ethics declarations

Ethics approval

This retrospective cross-sectional study was approved by the ethics committee of the First Affiliated Hospital of Soochow University and conducted in compliance with the Declaration of Helsinki.

Informed consent

This type of study does not require informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, C., Li, J. et al. Association of lens density quantified by IOLMaster 700 with lenticular myopia in nuclear cataract. Graefes Arch Clin Exp Ophthalmol 260, 1565–1572 (2022). https://doi.org/10.1007/s00417-021-05495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05495-4

Keywords

Navigation