Skip to main content

Advertisement

Log in

Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with an elusive etiology. While environmental factors have been considered, familial ALS cases have raised the possibility of genetic involvement. This genetic connection is increasingly evident, even in patients with sporadic ALS. We allowed access to the genetic test to all patients attending our clinic to identify the prevalence and the role of genetic variants in the development of the disease and to identify patients with potentially treatable forms of the disease.

Materials and methods

194 patients with probable or definite ALS, were enrolled. A comprehensive genetic testing was performed, including sequencing all exons of the SOD1 gene and testing for hexanucleotide intronic repeat expansions (G4C2) in the C9orf72 gene using fluorescent repeat-primed PCR (RP-PCR). Whole Exome NGS Sequencing (WES) was performed, followed by an in silico multigene panel targeting neuromuscular diseases, spastic paraplegia, and motor distal neuropathies. We conducted statistical analyses to compare different patient groups.

Results

Clinically significant pathogenetic variants were detected in 14.43% of cases. The highest prevalence of pathogenetic variants was observed in fALS patients, but a substantial proportion of sALS patients also displayed at least one variant, either pathogenetic or of uncertain significance (VUS). The most observed pathogenetic variant was the expansion of the C9orf72 gene, which was associated with a shorter survival. SOD1 variants were found in 1.6% of fALS and 2.5% of sALS patients.

Discussion

The study reveals a significant number of ALS patients carrying pathogenic or likely pathogenic variants, with a higher prevalence in familial ALS cases. The expansion of the C9orf72 gene emerges as the most common genetic cause of ALS, affecting familial and sporadic cases. Additionally, SOD1 variants are detected at an unexpectedly higher rate, even in patients without a familial history of ALS, underscoring the crucial role of genetic testing in treatment decisions and potential participation in clinical trials. We also investigated variants in genes such as TARDBP, FUS, NEK1, TBK1, and DNAJC7, shedding light on their potential involvement in ALS. These findings underscore the complexity of interpreting variants of uncertain significance (VUS) and their ethical implications in patient communication and genetic counseling for patients' relatives.

Conclusion

This study emphasizes the diverse genetic basis of ALS and advocates for integrating comprehensive genetic testing into diagnostic protocols. The evolving landscape of genetic therapies requires identifying all eligible patients transcending traditional familial boundaries. The presence of VUS highlights the multifaceted nature of ALS genetics, prompting further exploration of complex interactions among genetic variants, environmental factors, and disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172

    Article  CAS  PubMed  Google Scholar 

  2. Chiò A et al (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130

    Article  PubMed  Google Scholar 

  3. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628

    Article  CAS  PubMed  Google Scholar 

  4. Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet (London, England) 377(9769):942–955

    Article  CAS  PubMed  Google Scholar 

  5. Pender N, Pinto-Grau M, Hardiman O (2020) Cognitive and behavioural impairment in amyotrophic lateral sclerosis. Curr Opin Neurol 33(5):649–654

    Article  PubMed  Google Scholar 

  6. Wang M-D et al (2017) Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 61:101–130

    Article  CAS  PubMed  Google Scholar 

  7. Qiu X-B et al (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci: CMLS 63(22):2560–2570

    Article  CAS  PubMed  Google Scholar 

  8. Kurland LT, Mulder DW (1955) Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I Neurol 5(3):182–196

    CAS  Google Scholar 

  9. Perrone B, Conforti FL (2020) Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn 20(7):703–714

    Article  CAS  PubMed  Google Scholar 

  10. Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17(1):94–102

    Article  CAS  PubMed  Google Scholar 

  11. Wroe R et al (2008) ALSOD: the amyotrophic lateral sclerosis online database. Amyotroph Lateral Scler: Off Publ World Fed Neurol Res Group Motor Neuron Dis 9(4):249–250

    Article  CAS  Google Scholar 

  12. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  13. Cooper-Knock J, Shaw PJ, Kirby J (2014) The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol 127(3):333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Chalabi A et al (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81(12):1324–1326

    Article  CAS  PubMed  Google Scholar 

  15. Al-Chalabi A, Lewis CM (2011) Modelling the effects of penetrance and family size on rates of sporadic and familial disease. Hum Hered 71(4):281–288

    Article  PubMed  Google Scholar 

  16. Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13(2):96–104

    Article  CAS  PubMed  Google Scholar 

  17. Al-Chalabi A et al (2014) Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol 13(11):1108–1113

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vucic S et al (2020) ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology 94(15):e1657–e1663

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller T et al (2020) Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 383(2):109–119

    Article  CAS  PubMed  Google Scholar 

  20. Salmon K et al (2022) The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis. Brain J Neurol 145(4):1207–1210

    Article  Google Scholar 

  21. Shepheard SR et al (2021) Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 92(5):510–518

    Article  PubMed  Google Scholar 

  22. Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord: Off Publ World Fed Neurol, Res Group Motor Neuron Dis 1(5):293–299

    Article  CAS  Google Scholar 

  23. Byrne S et al (2011) Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(3):157–159

    Article  PubMed  Google Scholar 

  24. Paulson H (2018) Repeat expansion diseases. Handb Clin Neurol 147:105–123

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Blitterswijk M et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3776–3784

    Article  PubMed  Google Scholar 

  26. Shibuya K et al (2021) Facial onset amyotrophic lateral sclerosis with K3E variant in the Cu/Zn superoxide dismutase gene. Amyotroph Lateral Scler Frontotemporal Degener 22(1–2):144–146

    Article  CAS  PubMed  Google Scholar 

  27. Chen LX et al (2021) SOD1 mutation spectrum and natural history of ALS patients in a 15-year cohort in Southeastern China. Front Genet 12:746060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang SY et al (2017) Burden of rare variants in ALS genes influences survival in familial and sporadic ALS. Neurobiol Aging 58:238.e9-238.e15

    Article  CAS  PubMed  Google Scholar 

  29. Tasca G et al (2020) SOD1 p.D12Y variant is associated with amyotrophic lateral sclerosis/distal myopathy spectrum. Eur J Neurol 27(7):1304–1309

    Article  CAS  PubMed  Google Scholar 

  30. Weber M et al (2012) ALS patients with SOD1 mutations in Switzerland show very diverse phenotypes and extremely long survival. J Neurol Neurosurg Psychiatry 83(3):351–353

    Article  CAS  PubMed  Google Scholar 

  31. Chiò A et al (2010) Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. Arch Neurol 67(8):1002–1009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Quadri M et al (2011) Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson’s disease in Sardinia. Neurogenetics 12(3):203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tunca C et al (2020) Revisiting the complex architecture of ALS in Turkey: expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat 41(8):e7–e45

    Article  CAS  PubMed  Google Scholar 

  34. Kenna KP et al (2016) NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat Genet 48(9):1037–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L et al (2004) GC/AT-content spikes as genomic punctuation marks. Proc Natl Acad Sci 101(48):16855–16860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dilliott AA et al (2022) DnaJC7 in amyotrophic lateral sclerosis. Int J Mol Sci 23(8):4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farhan SMK et al (2019) Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat Neurosci 22(12):1966–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Azzedine H et al (2013) PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease. Hum Mol Genet 22(20):4224–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karch CM et al (2016) Missense mutations in progranulin gene associated with frontotemporal lobar degeneration: study of pathogenetic features. Neurobiol Aging 38:215.e1-215.e12

    Article  CAS  PubMed  Google Scholar 

  40. Stevanin G et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39(3):366–372

    Article  CAS  PubMed  Google Scholar 

  41. D’Amore A et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study. Front Neurol 9:981

    Article  PubMed  PubMed Central  Google Scholar 

  42. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–423

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grassano M et al (2022) Systematic evaluation of genetic mutations in ALS: a population-based study. J Neurol Neurosurg Psychiatry 93(11):1190–1193

    Article  PubMed  Google Scholar 

  44. Mehta PR et al (2019) Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. J Neurol Neurosurg Psychiatry 90(3):268–271

    Article  PubMed  Google Scholar 

  45. Beckers J, Tharkeshwar AK, Van Damme P (2021) C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 17(11):3306–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiò A et al (2012) ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations. J Neurol Neurosurg Psychiatry 83(7):730–733

    Article  PubMed  Google Scholar 

  47. Kaivorinne AL et al (2014) Novel TARDBP sequence variant and C9ORF72 repeat expansion in a family with frontotemporal dementia. Alzheimer Dis Assoc Disord 28(2):190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Blitterswijk M et al (2013) C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology 81(15):1332–1341

    Article  PubMed  PubMed Central  Google Scholar 

  49. King A et al (2013) Mixed tau, TDP-43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant. Acta Neuropathol 125(2):303–310

    Article  CAS  PubMed  Google Scholar 

  50. Millecamps S et al (2012) Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet 49(4):258–263

    Article  CAS  PubMed  Google Scholar 

  51. Cooper-Knock J et al (2012) Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 135(Pt 3):751–764

    Article  PubMed  PubMed Central  Google Scholar 

  52. Testi S et al (2015) Co-occurrence of the C9ORF72 expansion and a novel GRN mutation in a family with alternative expression of frontotemporal dementia and amyotrophic lateral sclerosis. J Alzheimers Dis 44(1):49–56

    Article  CAS  PubMed  Google Scholar 

  53. Umoh ME et al (2016) Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology 87(10):1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernard E et al (2020) Clinical and molecular landscape of ALS patients with SOD1 mutations: novel pathogenic variants and novel phenotypes. A single ALS center study. Int J Mol Sci 21(18):6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Olsen CG et al (2022) Genetic epidemiology of amyotrophic lateral sclerosis in Norway: a 2-year population-based study. Neuroepidemiology 56(4):271–282

    Article  PubMed  Google Scholar 

  56. Gagliardi D et al (2023) Clinical and molecular features of patients with amyotrophic lateral sclerosis and. Front Neurol 14:1169689

    Article  PubMed  PubMed Central  Google Scholar 

  57. Opie-Martin S et al (2022) The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat Commun 13(1):6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deshaies J-E et al (2018) TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain J Neurol 141(5):1320–1333

    Article  Google Scholar 

  59. Ishiguro A et al (2020) Molecular dissection of ALS-linked TDP-43 - involvement of the Gly-rich domain in interaction with G-quadruplex mRNA. FEBS Lett 594(14):2254–2265

    Article  CAS  PubMed  Google Scholar 

  60. Kabashi E et al (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19(4):671–683

    Article  CAS  PubMed  Google Scholar 

  61. Chiang H-H et al (2012) Novel TARDBP mutations in Nordic ALS patients. J Hum Genet 57(5):316–319

    Article  CAS  PubMed  Google Scholar 

  62. Naruse H et al (2021) Loss-of-function variants in NEK1 are associated with an increased risk of sporadic ALS in the Japanese population. J Hum Genet 66(3):237–241

    Article  CAS  PubMed  Google Scholar 

  63. Kim G et al (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron 108(5):822–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao L et al (2021) NEK1 mutations and the risk of amyotrophic lateral sclerosis (ALS): a meta-analysis. Neurol Sci 42(4):1277–1285

    Article  PubMed  Google Scholar 

  65. Riva N et al (2022) Variants in a Cohort of Italian patients with amyotrophic lateral sclerosis. Front Neurosci 16:833051

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bánfai Z et al (2017) Novel phenotypic variant in the MYH7 spectrum due to a stop-loss mutation in the C-terminal region: a case report. BMC Med Genet 18(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lu Y, Almeida S, Gao F-B (2021) TBK1 haploinsufficiency in ALS and FTD compromises membrane trafficking. Acta Neuropathol 142(1):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Libonati L et al (2022) A novel homozygous mutation in TBK1 gene causing ALS-FTD. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 43(3):2101–2104

    Google Scholar 

  69. An H et al (2019) ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol Commun 7(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grassano M et al (2022) Phenotype analysis of fused in sarcoma mutations in amyotrophic lateral sclerosis. Neurol Genet 8(5):e200011

    Article  PubMed  PubMed Central  Google Scholar 

  71. Groen EJ et al (2010) FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67(2):224–230

    Article  PubMed  Google Scholar 

  72. Abramzon YA et al (2020) The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kirola L, Mukherjee A, Mutsuddi M (2022) Recent updates on the genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Neurobiol 59(9):5673–5694

    Article  CAS  PubMed  Google Scholar 

  74. Tohnai G et al (2021) Mutation screening of the DNAJC7 gene in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging 113:131–136

    Article  PubMed  Google Scholar 

  75. Jih K-Y et al (2020) Rapid progressive ALS in a patient with a DNAJC7 loss-of-function mutation. Neurol Genet 6(5):e503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miao Y et al (2021) related autosomal recessive lower motor neuron disease with dysmyelination in peripheral nerves. Clin Neuropathol 40(6):328–332

    Article  PubMed  Google Scholar 

  77. Kim HJ et al (2013) Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 8:104

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maystadt I et al (2007) The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am J Hum Genet 81(1):67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fenoglio C et al (2009) Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimer’s Dis: JAD 18(3):603–612

    Article  CAS  PubMed  Google Scholar 

  80. Cruchaga C et al (2009) Cortical atrophy and language network reorganization associated with a novel progranulin mutation. Cereb Cortex (New York, NY, 1991) 19(8):1751–1760

    Article  Google Scholar 

  81. Wang J et al (2010) Pathogenic cysteine mutations affect progranulin function and production of mature granulins. J Neurochem 112(5):1305–1315

    Article  CAS  PubMed  Google Scholar 

  82. Steele NZ et al (2018) Frequency of frontotemporal dementia gene variants in C9ORF72, MAPT, and GRN in academic versus commercial laboratory cohorts. Adv Genom Genet 8:23–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Libonati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libonati, L., Cambieri, C., Colavito, D. et al. Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication. J Neurol 271, 1921–1936 (2024). https://doi.org/10.1007/s00415-023-12142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12142-x

Keywords

Navigation