Skip to main content

Advertisement

Log in

The association of subjective sleep characteristics and plasma biomarkers of Alzheimer’s disease pathology in older cognitively unimpaired adults with higher amyloid-β burden

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We aimed to investigate the association of subjective sleep characteristics and plasma Alzheimer’s disease (AD) biomarkers in older cognitively unimpaired adults with higher amyloid-β (Aβ) burden. Unimpaired cognition was determined by education-adjusted performance for the Mini-Mental State Examination and exclusion of dementia and mild cognitive impairment via standardized neuropsychological tests. We used Pittsburgh Sleep Quality Index (PSQI) to assess subjective sleep quality. The participants also underwent examination of plasma AD biomarkers and 18F-florbetapir PET scan. Correlation and multiple linear regression analyses were used to investigate the association between subjective sleep characteristics and AD biomarkers. A total of 335 participants were included and 114 were Aβ-PET positive. Multivariable regression analysis showed sleep duration > 8 h and sleep disturbance were associated with Aβ deposition in total participants. Two multiple linear regression models were applied and the results revealed in participants with Aβ-PET (+), falling asleep at ≥ 22:00 to ≤ 23:00 was associated with higher levels of Aβ42 and Aβ42/40. Other associations with higher Aβ42/40 and standard uptake value ratio contained sleep efficiency value, sleep efficiency ≥ 75%, no/mild daytime dysfunction and PSQI score ≤ 5. Higher p-Tau-181 level was associated with sleep latency > 30 min in Aβ-PET (+) group and moderate/severe sleep disturbance in Aβ-PET (–) group. Our data suggests sleep duration ≤ 8 h and no/mild sleep disturbance may be related to less Aβ burden. In participants with Aβ deposition, falling asleep at 22:00 to 23:00, higher sleep efficiency (at least ≥ 75%), no/mild daytime dysfunction, sleep latency ≤ 30 min, and good sleep quality may help improve AD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets collected and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Scheltens P, De Strooper B, Kivipelto M et al (2021) Alzheimer’s disease. Lancet 397:1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kivipelto M, Mangialasche F, Ngandu T (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol 14:653–666

    Article  PubMed  Google Scholar 

  3. van der Kall LM, Truong T, Burnham SC et al (2021) Association of β-amyloid level, clinical progression, and longitudinal cognitive change in normal older individuals. Neurology 96:e662–e670

    PubMed  PubMed Central  Google Scholar 

  4. Rosenich E, Bransby L, Yassi N et al (2022) Differential effects of APOE and modifiable risk factors on hippocampal volume loss and memory decline in Aβ- and Aβ+ older adults. Neurology 98:e1704–e1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu W, Tan L, Wang HF et al (2015) Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86:1299–1306

    PubMed  Google Scholar 

  6. Xu W, Tan CC, Zou JJ, Cao XP, Tan L (2020) Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 91:236–244

    Article  PubMed  Google Scholar 

  7. Winer JR, Deters KD, Kennedy G et al (2021) Association of short and long sleep duration with amyloid-β burden and cognition in aging. JAMA Neurol 78:1187–1196

    Article  PubMed  Google Scholar 

  8. Xu W, Tan L, Su BJ et al (2020) Sleep characteristics and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact older adults: The CABLE study. Alzheimers Dement 16:1146–1152

    Article  PubMed  Google Scholar 

  9. Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K (2019) Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol 76:791–799

    Article  PubMed  PubMed Central  Google Scholar 

  10. West T, Kirmess KM, Meyer MR et al (2021) A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: findings from a multi cohort validity analysis. Mol Neurodegener 16:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moscoso A, Grothe MJ, Ashton NJ et al (2021) Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 144:325–339

    Article  PubMed  Google Scholar 

  12. Teunissen CE, Verberk IMW, Thijssen EH et al (2022) Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol 21:66–77

    Article  CAS  PubMed  Google Scholar 

  13. Katzman R, Zhang MY, Ouang-Ya-Qu et al (1988) A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41:971–978

    Article  CAS  PubMed  Google Scholar 

  14. American Psychiatric Association [APA] (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, p 2000

    Google Scholar 

  15. Bondi MW, Edmonds EC, Jak AJ et al (2014) Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis 42:275–289

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen KL, Xu Y, Chu AQ et al (2016) Validation of the Chinese version of Montreal cognitive assessment basic for screening mild cognitive impairment. J Am Geriatr Soc 64:e285–e290

    Article  PubMed  Google Scholar 

  17. Zhao Q, Guo Q, Liang X et al (2015) Auditory verbal learning test is superior to rey-osterrieth complex figure memory for predicting mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res 12:520–526

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan E, Goodglass H, Weintraub S (1983) The boston naming test. Lea & Febiger, Philadelphia

    Google Scholar 

  19. Zhao Q, Guo Q, Hong Z (2013) Clustering and switching during a semantic verbal fluency test contribute to differential diagnosis of cognitive impairment. Neurosci Bull 29:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao Q, Guo Q, Li F, Zhou Y, Wang B, Hong Z (2013) The shape trail test: application of a new variant of the trail making test. PLoS One 8:e57333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213

    Article  CAS  PubMed  Google Scholar 

  22. Lundeen TF, Seibyl JP, Covington MF, Eshghi N, Kuo PH (2018) Signs and artifacts in amyloid PET. Radiographics 38:2123–2133

    Article  PubMed  Google Scholar 

  23. Wilson DH, Rissin DM, Kan CW et al (2016) The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom 21:533–547

    Article  CAS  PubMed  Google Scholar 

  24. Etain B, Krane-Gartiser K, Hennion V, Meyrel M, Scott J (2022) Do self-ratings of the Pittsburgh Sleep Quality Index reflect actigraphy recordings of sleep quality or variability? An exploratory study of bipolar disorders versus healthy controls. J Sleep Res 31:e13507

    Article  PubMed  Google Scholar 

  25. Siu PM, Yu AP, Tam BT et al (2021) Effects of tai chi or exercise on sleep in older adults with insomnia: a randomized clinical trial. JAMA Netw Open 4:e2037199

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kent BA, Feldman HH, Nygaard HB (2021) Sleep and its regulation: an emerging pathogenic and treatment frontier in Alzheimer’s disease. Prog Neurobiol 197:101902

    Article  PubMed  Google Scholar 

  27. Branger P, Arenaza-Urquijo EM, Tomadesso C et al (2016) Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol Aging 41:107–114

    Article  CAS  PubMed  Google Scholar 

  28. Sprecher KE, Koscik RL, Carlsson CM et al (2017) Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lucey BP, Hicks TJ, McLeland JS et al (2018) Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol 83:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shokri-Kojori E, Wang GJ, Wiers CE et al (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 115:4483–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma Y, Liang L, Zheng F, Shi L, Zhong B, Xie W (2020) Association between sleep duration and cognitive decline. JAMA Netw Open 3:e2013573

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leuzy A, Mattsson-Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O (2022) Blood-based biomarkers for Alzheimer’s disease. EMBO Mol Med 14:e14408

    Article  CAS  PubMed  Google Scholar 

  33. Janelidze S, Palmqvist S, Leuzy A et al (2022) Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Aβ42/Aβ40 and p-tau. Alzheimers Dement 18:283–293

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura A, Kaneko N, Villemagne VL et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254

    Article  CAS  PubMed  Google Scholar 

  35. Schindler SE, Bollinger JG, Ovod V et al (2019) High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93:e1647–e1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stockmann J, Verberk IMW, Timmesfeld N et al (2020) Amyloid-β misfolding as a plasma biomarker indicates risk for future clinical Alzheimer’s disease in individuals with subjective cognitive decline. Alzheimers Res Ther 12:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mielke MM, Hagen CE, Xu J et al (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14:989–997

    Article  PubMed  PubMed Central  Google Scholar 

  38. Janelidze S, Mattsson N, Palmqvist S et al (2020) Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 26:379–386

    Article  CAS  PubMed  Google Scholar 

  39. Karikari TK, Benedet AL, Ashton NJ et al (2021) Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol Psychiatry 26:429–442

    Article  CAS  PubMed  Google Scholar 

  40. Sakamoto K, Matsuki S, Matsuguma K et al (2017) BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J Clin Pharmacol 57:1460–1471

    Article  CAS  PubMed  Google Scholar 

  41. Budd Haeberlein S, Aisen PS, Barkhof F et al (2022) Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis 9:197–210

    CAS  PubMed  Google Scholar 

  42. Ju YE, Lucey BP, Holtzman DM (2014) Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat Rev Neurol 10:115–119

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Huang C, Guo Q, Chu H (2022) Aquaporin-4 and cognitive disorders. Aging Dis 13:61–72

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yi T, Gao P, Zhu T, Yin H, Jin S (2022) Glymphatic system dysfunction: a novel mediator of sleep disorders and headaches. Front Neurol 13:885020

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, Amyloid-β, and sleep. Biol Psychiatry 83:328–336

    Article  PubMed  Google Scholar 

  46. Shetty AK, Zanirati G (2020) The interstitial system of the brain in health and disease. Aging Dis 11:200–211

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang C, Huang L, Xu M (2022) Dopamine control of REM sleep and cataplexy. Neurosci Bull 38:1617–1619

    Article  CAS  PubMed  Google Scholar 

  48. Kang JE, Lim MM, Bateman RJ et al (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roh JH, Jiang H, Finn MB et al (2014) Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med 211:2487–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zamfir Chiru AA, Popescu CR, Gheorghe DC (2014) Melatonin and cancer. J Med Life 7:373–374

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Zhang J, Wan J, Liu A, Sun J (2020) Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: a potential therapeutic molecule for Alzheimer’s disease. Biomed Pharmacother 132:110887

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82171198; 82071472; 81901102), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, the Guangdong Provincial Key S&T Program (2018B030336001) and Shanghai Pujiang Program (21PJ1423100).

Author information

Authors and Affiliations

Authors

Contributions

HC designed the study, analyzed the data and drafted of the manuscript. CH revised the manuscript. YM collected the data. CR collected and processed the blood sample. YG had a major role in PET experiments and data analyses. FX assisted in the PET experiments. ZF conceptualized the study. QG conceptualized and designed the study, and revised the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhuo Fang or Qihao Guo.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

This study was approved by the ethical standards of the Ethics Committee of Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (No. 2019-032), and written informed consent was provided by each patient’s next of kin/participant.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Huang, C., Miao, Y. et al. The association of subjective sleep characteristics and plasma biomarkers of Alzheimer’s disease pathology in older cognitively unimpaired adults with higher amyloid-β burden. J Neurol 270, 3008–3021 (2023). https://doi.org/10.1007/s00415-023-11626-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11626-0

Keywords

Navigation