Skip to main content

Advertisement

Log in

The propagation mechanisms of extracellular tau in Alzheimer’s disease

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Tubulin-associated unit (tau) is an important microtubule-associated protein. The abnormal intracellular aggregation of tau has been strongly associated with Alzheimer's disease (AD). Accumulating evidence has conclusively demonstrated that tau is present in the cytoplasm of neurons and is also actively released into the extracellular space. However, the types of tau species that are released are unclear, as is the mechanism of their release by donor neurons and subsequent uptake by recipient neurons in AD. Understanding the underlying mechanisms of abnormal tau cell-to-cell transmission can provide novel insights into the etiology and pathogenesis of AD and can help identify new targets for the development of AD therapies focused on counteracting neurodegeneration or even preventing it. From this perspective, the present review focuses on recent advances in understanding the mechanisms regulating the levels of extracellular tau and discusses the role of such mechanisms in the propagation of tau-associated pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

All articles referenced in this review are available.

Abbreviations

AD:

Alzheimer's disease

CSF:

Cerebrospinal fluid

EV:

Extracellular vesicle

MT:

Microtubule

NFT:

Neurofibrillary tangle

PHF:

Paired helical filaments

PM:

Plasma membrane

PTM:

Post-translational modification

Tau:

Tubulin-associated unit

TNTs:

Tunneling nanotubes

References

  1. Dotti CG, Banker GA, Binder LI (1987) The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience 23:121–130

    Article  CAS  PubMed  Google Scholar 

  2. Brunello CA, Merezhko M, Uronen R-L, Huttunen HJ (2020) Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 77:1721–1744

    Article  CAS  PubMed  Google Scholar 

  3. LoPresti P, Szuchet S, Papasozomenos SC et al (1995) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci 92:10369–10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pooler AM, Noble W, Hanger DP (2014) A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76:1–8

    Article  CAS  PubMed  Google Scholar 

  5. Slachevsky A, Guzmán-Martínez L, Delgado C et al (2017) Tau platelets correlate with regional brain atrophy in patients with Alzheimer’s disease. J Alz Dis 55:1595–1603

    CAS  Google Scholar 

  6. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles in Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  7. Qian W, Liu F (2014) Regulation of alternative splicing of tau exon 10. Neurosci Bull 30:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pampuscenko K, Morkuniene R, Krasauskas L, Smirnovas V, Tomita T, Borutaite V (2021) Distinct neurotoxic effects of extracellular tau species in primary neuronal-glial cultures. Mol Neurobiol 58:658–667

    Article  CAS  PubMed  Google Scholar 

  9. Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W (2019) Biomarkers for tau pathology. Mol Cell Neurosci 97:18–33

    Article  PubMed  PubMed Central  Google Scholar 

  10. Violet M, Delattre L, Tardivel M et al (2014) A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sultan A, Nesslany F, Violet M et al (2011) Nuclear tau plays a key role in neuronal DNA protection. J Biol Chem 286:4566–4675

    Article  CAS  PubMed  Google Scholar 

  12. Fuster-Matanzo A, Hernández F, Ávila J (2018) Tau spreading mechanisms; implications for dysfunctional tauopathies. Int J Mol Sci 19:645

    Article  PubMed Central  Google Scholar 

  13. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    Article  CAS  PubMed  Google Scholar 

  14. Dujardin S, Bégard S, Caillierez R et al (2018) Different tau species lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathol Microbiol 6:132

    Article  CAS  Google Scholar 

  15. Hu W, Wu F, Zhang Y, Gong C-X, Iqbal K, Liu F (2017) Expression of tau pathology-related proteins in different brain regions: a molecular basis of tau pathogenesis. Front Aging Neurosci 9:311

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schweers O, Mandelkow EM, Biernat J, Mandelkow E (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci USA 92:8463–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schoch KM, DeVos SL, Miller RL et al (2016) Increased 4R-Tau induces pathological changes in a human-tau mouse model. Neuron 90:941–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tuerde D, Kimura T, Miyasaka T et al (2018) Isoform-independent and -dependent phosphorylation of microtubule-associated protein tau in mouse brain during postnatal development. J Biol Chem 293:1781–1793

    Article  CAS  PubMed  Google Scholar 

  19. Bunker JM, Wilson L, Jordan MA, Feinstein SC (2004) Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell 15:2720–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barghorn S, Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41:14885–14896

    Article  CAS  PubMed  Google Scholar 

  21. Karch CM, Jeng AT, Goate AM (2012) Extracellular tau levels are influenced by variability in tau that is associated with tauopathies. J Biol Chem 287:42751–42762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stoothoff W, Jones PB, Spires-Jones TL et al (2009) Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport. J Neurochem 111:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in the human brain. EMBO J 8:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ (2014) O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol 426:1736–1752

    Article  CAS  PubMed  Google Scholar 

  27. Sohn PD, Tracy TE, Son HI, Zhou Y, Leite RE, Miller BL, Seeley WW, Grinberg LT, Gan L (2016) Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener 11:47

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:731526

    PubMed  PubMed Central  Google Scholar 

  29. Min SW, Cho SH, Zhou Y et al (2010) The acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trzeciakiewicz H, Tseng JH, Wander CM, Madden V, Tripathy A, Yuan CX, Cohen TJ (2017) A dual pathogenic mechanism links tau acetylation to sporadic tauopathy. Sci Rep 7:44102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  Google Scholar 

  32. Thomas SN, Funk KE, Wan Y et al (2012) Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: A mass spectrometry approach. Acta Neuropathol 123:105–117

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe T, Ihara N, Itoh T, Fujita T, Sugimoto Y (2000) Deletion mutation in Drosophila ma-l homologous, putative molybdopterin cofactor sulfurase gene is associated with bovine xanthinuria type II. J Biol Chem 275:21789–21792

    Article  CAS  PubMed  Google Scholar 

  34. Ledesma MD, Bonay P, Avila J (1995) Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J Neurochem 65:1658–1664

    Article  CAS  PubMed  Google Scholar 

  35. Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703

    Article  CAS  PubMed  Google Scholar 

  36. Funk KE, Thomas SN, Schafer KN, Cooper GL, Liao Z, Clark DJ, Yang AJ, Kuret J (2014) Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem J 462:77–88

    Article  CAS  PubMed  Google Scholar 

  37. Reynolds MR, Lukas TJ, Berry RW, Binder LI (2006) Peroxynitrite-mediated tau modifications stabilize preformed filaments and destabilize microtubules through distinct mechanisms. Biochemistry 45:4314–4326

    Article  CAS  PubMed  Google Scholar 

  38. Cappelletti G, Tedeschi G, Maggioni MG, Negri A, Nonnis S et al (2004) Nitration of tau protein in neuron-like PC12 cells. FEBS Lett 562:35–39

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration differentially influences tau assembly in vitro. Biochemistry 44:13997–14009

    Article  CAS  PubMed  Google Scholar 

  40. Reyes JF, Fu Y, Vana L, Kanaan NM, Binder LI (2011) Tyrosine nitration within the proline-rich region of tau in Alzheimer’s disease. Am J Pathol 178:2275–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau, a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marcus JN, Schachter J (2011) Targeting post-translational modifications on tau as a therapeutic strategy for Alzheimer’s disease. J Neurogenet 25:127–133

    Article  CAS  PubMed  Google Scholar 

  43. Simić G, Diana A, Hof PR (2003) Phosphorylation pattern of tau associated with distinct changes in the growth cone cytoskeleton. Prog Mol Subcell Biol 32:33–48

    Article  PubMed  Google Scholar 

  44. Lee S, Shea TB (2012) Caspase-mediated truncation of Tau potentiates aggregation. Int J Alzheimers Dis 2012:731063

    PubMed  PubMed Central  Google Scholar 

  45. Jarero-Basulto JJ, Luna-Muñoz J, Mena R, Kristofikova Z, Ripova D, Perry G, Binder LI, Garcia-Sierra F (2013) Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease. J Neuropathol Exp Neurol 72:1145–11461

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura K, Zhen Zhou X, Ping LuK (2013) Cis phosphorylated tau as the earliest detectable pathogenic conformation in Alzheimer’s disease, offering novel diagnostic and therapeutic strategies. Prion 7:117–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149:232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biernat J, Wu YZ, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L, Mandelkow EM (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13:4013–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biernat J, Mandelkow EM (1999) The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell 10:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  52. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281:9919–9924

    Article  CAS  PubMed  Google Scholar 

  53. Luo HB, Xia YY, Shu XJ et al (2014) SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci USA 111:16586–16591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Derisbourg M, Leghay C, Chiappetta G et al (2015) Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 5:9659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahs K, Ramsden M, Cleary J, Ashe KH (2016) Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 22:1268–1276

    Article  CAS  PubMed  Google Scholar 

  56. Zabik NL, Imhof MM, Martic-Milne M (2017) Structural evaluations of tau protein conformation: methodologies and approaches. Biochem Cell Biol 95:338–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dickey CA, Yue M, Lin WL et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26:6985–6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  CAS  PubMed  Google Scholar 

  59. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10:1151–1160

    Article  CAS  PubMed  Google Scholar 

  60. Huseby CJ, Hoffman CN, Cooper GL et al (2019) Quantification of tau protein lysine methylation in aging and Alzheimer’s disease. J Alzheimers Dis 71:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    Article  CAS  PubMed  Google Scholar 

  62. Oudart J-B, Zucchini L, Maquart F-X et al (2017) Tau protein as a possible marker of cerebrospinal fluid leakage in cerebrospinal fluid rhinorrhea: a pilot study. Biochem Med (Zagreb) 27:030703

    Article  Google Scholar 

  63. Zetterberg H (2017) Review: Tau in biofluids - relation to pathology, imaging, and clinical features. Neuropathol Appl Neurobiol 43:194–199

    Article  CAS  PubMed  Google Scholar 

  64. Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48:356–366

    Article  CAS  PubMed  Google Scholar 

  65. Kanmert D, Cantlon A, Muratore CR et al (2015) C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci 35:10851–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamada K, Patel TK, Hochgräfe K, Mahan TE, Jiang H, Stewart FR, Mandelkow EM, Holtzman DM (2015) Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener 10:55

    Article  PubMed  PubMed Central  Google Scholar 

  67. Janelidze S, Stomrud E, Smith R et al (2020) Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun 11:683

    Article  Google Scholar 

  68. Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M (2014) Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 11:161

    Article  PubMed  PubMed Central  Google Scholar 

  69. Goedert M (2016) The ordered assembly of tau is a gain-of-toxic function that causes human tauopathies. Alzheimers Dement 12:1040–1050

    Article  PubMed  Google Scholar 

  70. Weismiller WA, Murphy R, Wei G, Ma B, Nussinov R, Margittai M (2018) Structural disorder in four-repeat tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. J Biol Chem 293:17336–17348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Falcon B, Cavallini A, Angers R et al (2015) Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem 290:1049–1065

    Article  CAS  PubMed  Google Scholar 

  72. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:5–21

    Article  PubMed  Google Scholar 

  74. Yamada K, Holth JK, Liao F et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N (2012) Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS ONE 7:e36873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bright J, Hussain S, Dang V et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36:693–709

    Article  CAS  PubMed  Google Scholar 

  77. Dujardin S, Bégard S, Caillierez R et al (2014) Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS ONE 9:e100760

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mohamed N-V, Desjardins A, Leclerc N (2017) Tau secretion is correlated with an increase in Golgi dynamics. PLoS ONE 12:e0178288

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shanya Jiang S, Bhaskar K (2020) Degradation and transmission of tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Front Mol Neurosci 16:586731

    Article  Google Scholar 

  80. Saman S, Kim W, Raya M et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    Article  CAS  PubMed  Google Scholar 

  81. Merezhko M, Uronen R-L, Huttunen HJ (2020) The cell biology of tau secretion. Front Mol Neurosci 13:569818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  83. Dujardin S, Lécolle K, Caillierez R et al (2014) Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Microbiol 2:14

    Article  Google Scholar 

  84. Sokolow S, Henkins KM, Bilousova T et al (2015) Presynaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem 133:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA (2016) Association of APOE with tau-tangle pathology with and without β-amyloid. Neurobiol Aging 37:19–25

    Article  CAS  PubMed  Google Scholar 

  86. Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R (2010) Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 112:1353–1267

    Article  PubMed  Google Scholar 

  87. Uchihara T (2020) Neurofibrillary changes undergoing morphological and biochemical changes: How does tau with the profile shift of from four repeats to three repeats spread in the Alzheimer’s brain? Neuropathology 40:450–459

    Article  CAS  PubMed  Google Scholar 

  88. Mroczko B, A, (2019) The role of protein misfolding and tau oligomers (tauOs) in Alzheimer’s disease (AD). Int J Mol Sci 20:4661

    Article  CAS  PubMed Central  Google Scholar 

  89. Cárdenas-Aguayo Mdel C, Gómez-Virgilio L, DeRosa S, Meraz-Ríos MA (2014) Role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem Neurosci 5:1178–1191

    Article  PubMed  Google Scholar 

  90. Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL (2017) Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front Aging Neurosci 9:83

    Article  PubMed  PubMed Central  Google Scholar 

  91. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau A component of Alzheimer’s paired helical filaments. J Biol Chem 261:6084–6089

    Article  CAS  PubMed  Google Scholar 

  92. Wischik CM, Schelter BO, Wischik DJ, Storey JMD, Harrington CR (2018) Modeling prion-like processing of tau protein in Alzheimer’s disease for pharmaceutical development. J Alzheimers Dis 62:1287–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J et al (2000) Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 157:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wharton SB, Minett T, Drew D et al (2016) Epidemiological pathology of Tau in the aging brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and aging brain study. Acta Neuropathol Microbiol 4:11

    Article  Google Scholar 

  96. Ahmed Z, Cooper J, Murray TK et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127:667–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193

    Article  CAS  PubMed  Google Scholar 

  98. Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  99. Nilson AN, English KC, Gerson JE et al (2017) Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimers Dis 55:1083–1099

    Article  CAS  PubMed  Google Scholar 

  100. Seppala TT, Koivisto AM, Hartikainen P, Helisalmi S, Soininen H, Herukka SK (2011) Longitudinal changes of CSF biomarkers in Alzheimer’s disease. J Alzheimers Dis 25:583–594

    Article  PubMed  Google Scholar 

  101. Morozova V, Cohen LS, El-Hadi Makki A, Shur A, Pilar G, El Idrissi A, Alonso AD (2019) Normal and pathological tau uptake mediated by M1/M3 muscarinic receptors promotes opposite neuronal changes. Front Cell Neurosci 13:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu JW, Herman M, Liu L et al (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  CAS  PubMed  Google Scholar 

  103. Ruan Z, Pathak D, Kalavai SV et al (2021) Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 144:288–309

    Article  PubMed  Google Scholar 

  104. DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, Commins C, Gonzalez JA, Dooley PM, Frosch MP, Hyman BT (2018) Synaptic tau seeding precedes tau pathology in human alzheimer’s disease brain. Front Neurosci 12:267

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tardivel M, Bégard S, Bousset L, Dujardin S, Coens A, Melki R, Buée L, Colin M (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  106. Merezhko M, Brunello CA, Yan X, Vihinen H, Jokitalo E, Uronen R-L, Huttunen HJ (2018) Secretion of tau via an unconventional non-vesicular mechanism. Cell Rep 25:2027–2035

    Article  CAS  PubMed  Google Scholar 

  107. Pérez M, Avila J, Hernández F (2019) Propagation of tau via extracellular vesicles. Front Neurosci 13:698

    Article  PubMed  PubMed Central  Google Scholar 

  108. Falcon B, Noad J, McMahon H, Randow F, Goedert M (2018) Galectin-8–mediated selective autophagy protects against seeded tau aggregation. J Biol Chem 293:2438–2451

    Article  CAS  PubMed  Google Scholar 

  109. Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, Livesey FJ (2018) Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep 22:3612–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Holmes BB, DeVos SL, Kfoury N et al (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci USA 110:E3138–E3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Narasimhan S, Changolkar L, Riddle DM et al (2020) Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. J Exp Med 217:e20190783

    Article  PubMed  Google Scholar 

  112. Narasimhan S, Guo JL, Changolkar L, Stieber A, McBride JD, Silva LV, He Z, Zhang B, Gathagan RJ, Trojanowski JQ, Lee VMY (2017) Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J Neurosci 37:11406–11423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W (2020) Astrocytes in Tauopathies. Front Neurol 11:572850

    Article  PubMed  PubMed Central  Google Scholar 

  114. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by the Beijing Science and Technology Planning Project (grant number No. Z171100001017106) and the National Natural Science Foundation of China (No. 81904194).

Author information

Authors and Affiliations

Authors

Contributions

As the co-first author, Yun Wei and Meixia Liu wrote the manuscript. Dongxin Wang helped with initial writing. Yun Wei edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yun Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This article is a review and does not involve human or animal specimens.

Consent to publish

All authors gave their consent for the publishing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Liu, M. & Wang, D. The propagation mechanisms of extracellular tau in Alzheimer’s disease. J Neurol 269, 1164–1181 (2022). https://doi.org/10.1007/s00415-021-10573-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10573-y

Keywords

Navigation