Skip to main content
Log in

The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Histone chaperones that escort histones during their overall lifetime from synthesis to sites of usage can participate in various tasks. Their requirement culminates in the dynamic processes of nucleosome assembly and disassembly. In this context, it is important to define the exact role of the histone chaperone Asf1. In mammals, Asf1 interacts with two other chaperones, CAF-1 and HIRA, which are critical in DNA synthesis-coupled and synthesis-uncoupled nucleosome assembly pathways, respectively. A key issue is whether Asf1 is able or not to deposit histones onto DNA by itself in both pathways. Here, to delineate the precise role of Asf1 in chromatin assembly, we used Xenopus egg extracts as a powerful system to assay de novo chromatin assembly pathways in vitro. Following characterization of both Xenopus Asf1 and p60 (CAF-1), we used immunodepletion strategies targeting Asf1, HIRA, or CAF-1. Strikingly, the depletion of Asf1 led to the simultaneous depletion of HIRA and consequently impaired the DNA synthesis-independent nucleosome assembly pathway. The rescue of nucleosome assembly capacity in such extracts was effective when adding HIRA along with H3/H4 histones, yet addition of Asf1 along with H3/H4 histones did not work. Moreover, nucleosome assembly coupled to DNA repair was not affected in these Asf1/HIRA-depleted extracts, a pathway impaired by CAF-1 depletion. Thus, these data show that Asf1 is not directly involved in de novo histone deposition during DNA synthesis-independent and synthesis-dependent pathways in egg extracts. Based on our results, it becomes important to consider the implications for Asf1 function during early development in Xenopus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins MW, Tyler JK (2004) The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 279:52069–52074

    Article  PubMed  CAS  Google Scholar 

  • Adkins MW, Howar SR, Tyler JK (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14:657–666

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Almouzni G (1998) Assembly of chromatin and nuclear structures in Xenopus egg extracts. In Chromatin, a practical approach. Oxford University Press, Oxford, pp 195–218

  • Almouzni G, Mechali M (1988) Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J 7:665–672

    PubMed  CAS  Google Scholar 

  • Antczak AJ, Tsubota T, Kaufman PD, Berger JM (2006) Structure of the yeast histone H3-ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics. BMC Struct Biol 6:26

    Article  PubMed  CAS  Google Scholar 

  • Boeger H, Griesenbeck J, Strattan JS, Kornberg RD (2003) Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 11:1587–1598

    Article  PubMed  CAS  Google Scholar 

  • Chimura T, Kuzuhara T, Horikoshi M (2002) Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc Natl Acad Sci USA 99:9334–9339

    Article  PubMed  CAS  Google Scholar 

  • Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD, Krawitz DC, Kama T (2003) Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13:2148–2158

    Article  PubMed  CAS  Google Scholar 

  • Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7:13–20

    Article  PubMed  CAS  Google Scholar 

  • English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–896

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PH, Roche D, Almouzni G (1999) Nucleotide excision repair coupled to chromatin assembly. In: Methods Mol. Biol. Humana, Totowa, NJ pp 231–243

  • Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD (2005) Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15:2044–2049

    Article  PubMed  CAS  Google Scholar 

  • Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G (2005) Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell 17:301–311

    Article  PubMed  CAS  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19:295–310

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt JA, Franke WW (1982) Soluble acidic complexes containing histones H3 and H4 in nuclei of Xenopus laevis oocytes. Cell 29:799–809

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420

    Article  PubMed  CAS  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    Article  PubMed  CAS  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Loyola A, Almouzni G (2004) Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 15:1–3

    Google Scholar 

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334

    Article  PubMed  CAS  Google Scholar 

  • Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16:2621–2626

    Article  PubMed  CAS  Google Scholar 

  • Mousson F, Lautrette A, Thuret JY, Agez M, Courbeyrette R, Amigues B, Becker E, Neumann JM, Guerois R, Mann C, Ochsenbein F (2005) Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc Natl Acad Sci USA 102:5975–5980

    Article  PubMed  CAS  Google Scholar 

  • Mousson F, Ochsenbein F, Mann C (2007) The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116:79–93

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Nishioka K, Dong YX, Shimojima T, Hirose S (2007) Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading. Genes Dev 21:552–561

    Article  PubMed  CAS  Google Scholar 

  • Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446:338–341

    Article  PubMed  CAS  Google Scholar 

  • Polo SE, Almouzni G (2006) Chromatin assembly: a basic recipe with various flavours. Curr Opin Genet Dev 16:104–111

    Article  PubMed  CAS  Google Scholar 

  • Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493

    Article  PubMed  CAS  Google Scholar 

  • Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027

    Article  PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Almouzni G (2004) DNA synthesis-dependent and -independent chromatin assembly pathways in Xenopus egg extracts. Methods Enzymol 375:117–131

    Article  PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Reinke H, Horz W (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11:1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Ridgway P, Almouzni G (2000) CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 113:2647–2658

    PubMed  CAS  Google Scholar 

  • Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, Brickman JM, Wynshaw-Boris A, Scambler PJ (2002) Targeted mutagenesis of the hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328

    Article  PubMed  CAS  Google Scholar 

  • Sanematsu F, Takami Y, Barman HK, Fukagawa T, Ono T, Shibahara K, Nakayama T (2006) Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J Biol Chem 281:13817–13827

    Article  PubMed  CAS  Google Scholar 

  • Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6:139–149

    Article  PubMed  CAS  Google Scholar 

  • Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22:415–422

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814

    Article  PubMed  CAS  Google Scholar 

  • Sillje HH, Nigg EA (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Simon RH, Felsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689–696

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R (2006) Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 13:921–929

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in Histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    Article  PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank NIBB for providing us Xenopus p60 cDNA clone. We are grateful to F. Sangrado for Xenopus p60 antibodies. We thank A. Verreault for human CAF-1 complex. We also thank Adam Cook for critical reading of the manuscript. This work was supported by la Ligue Nationale contre le Cancer, the Commissariat à l’Energie Atomique, European contract RTN, NoE Epigenome, and Canceropole. HHWS and EAN acknowledge support from the Max-Planck-Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni.

Additional information

Communicated by S. Henikoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray-Gallet, D., Quivy, JP., Silljé, H.W.W. et al. The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma 116, 487–496 (2007). https://doi.org/10.1007/s00412-007-0112-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0112-x

Keywords

Navigation