Skip to main content
Log in

The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Nucleosome assembly involves deposition of a heterotetramer of histones H3/H4 onto DNA followed by two heterodimers of histones H2A/H2B. Cycles of nucleosome assembly and disassembly are essential to cellular events such as replication, transcription, and DNA repair. After synthesis in the cytoplasm, histones are shuttled into the nucleus where they are associated with chaperone proteins. Chaperones of histones H3/H4 include CAF-I, the Hir proteins, and Asf1. CAF-I and the Hir proteins function as replication-coupled and replication-independent deposition factors for H3/H4, respectively, whereas Asf1 may play a role in both pathways. In addition to acting as assembly factors, histone chaperones assist nucleosome dissociation from DNA and they may recruit other proteins to chromatin. The past few years have witnessed a notable accumulation of genetic, biochemical, and structural data on Asf1, which motivated this review. We discuss the sequence and structural features of Asf1 before considering its roles in nucleosome assembly/disassembly, the cellular response to DNA damage, and the regulation of gene expression. We emphasize the key role of Asf1 as a central node in a network of partners that place it at the crossroads of chromatin and DNA checkpoint pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams CR, Kamakaka RT (1999) Chromatin assembly: biochemical identities and genetic redundancy. Curr Opin Genet Dev 9:185–190

    Article  PubMed  CAS  Google Scholar 

  • Adkins MW, Tyler JK (2004) The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 279:52069–52074

    Article  PubMed  CAS  Google Scholar 

  • Adkins MW, Tyler JK (2006) Transcriptional activators are dispensable for transcription in the absence of spt6-mediated chromatin reassembly of promoter regions. Mol Cell 21:405–416

    Article  PubMed  CAS  Google Scholar 

  • Adkins MW, Howar SR, Tyler JK (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14:657–666

    Article  PubMed  CAS  Google Scholar 

  • Annunziato AT (2005) Split decision: what happens to nucleosomes during DNA replication? J Biol Chem 280:12065–12068

    Article  PubMed  CAS  Google Scholar 

  • Banks DD, Gloss LM (2004) Folding mechanism of the (H3–H4)2 histone tetramer of the core nucleosome. Protein Sci 13:1304–1316

    Article  PubMed  CAS  Google Scholar 

  • Baxevanis AD, Godfrey JE, Moudrianakis EN (1991) Associative behavior of the histone (H3–H4)2 tetramer: dependence on ionic environment. Biochemistry 30:8817–8823

    Article  PubMed  CAS  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434

    Article  PubMed  CAS  Google Scholar 

  • Blackwell C, Martin KA, Greenall A, Pidoux A, Allshire RC, Whitehall SK (2004) The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol Cell Biol 24:4309–4320

    Article  PubMed  CAS  Google Scholar 

  • Bortvin A, Winston F (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272:1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Stubbe J (2005) Bleomycins: towards better therapeutics. Nat Rev Cancer 5:102–112

    Article  PubMed  CAS  Google Scholar 

  • Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD (2003) Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13:2148–2158

    Article  PubMed  CAS  Google Scholar 

  • Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7:13–20

    Article  PubMed  CAS  Google Scholar 

  • English CM, Maluf NK, Tripet B, Churchill ME, Tyler JK (2005) ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3–H4 heterotetramer on DNA. Biochemistry 44:13673–13682

    Article  PubMed  CAS  Google Scholar 

  • Franco AA, Lam WM, Burgers PM, Kaufman PD (2005) Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CS, Green CM, Lowndes NF (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8:129–136

    Article  PubMed  CAS  Google Scholar 

  • Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD (2005) Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15:2044–2049

    Article  PubMed  CAS  Google Scholar 

  • Greiner M, Caesar S, Schlenstedt G (2004) The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms. Eur J Cell Biol 83:511–520

    Article  PubMed  CAS  Google Scholar 

  • Groth A, Lukas J, Nigg EA, Sillje HH, Wernstedt C, Bartek J, Hansen K (2003) Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. Embo J 22:1676–1687

    Article  PubMed  CAS  Google Scholar 

  • Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G (2005) Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell 17:301–311

    Article  PubMed  CAS  Google Scholar 

  • Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549

    Article  PubMed  CAS  Google Scholar 

  • Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Huang S, O’Shea EK (2005) A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation. Genetics 169:1859–1871

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z (2005) Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci USA 102:13410–13415

    Article  PubMed  CAS  Google Scholar 

  • Kaplan CD, Laprade L, Winston F (2003) Transcription elongation factors repress transcription initiation from cryptic sites. Science 301:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:345–357

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Cohen JL, Osley MA (1998) Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 18:4793–4806

    PubMed  CAS  Google Scholar 

  • Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Horz W (2006) The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 281:5539–5545

    Article  PubMed  CAS  Google Scholar 

  • Koundrioukoff S, Polo S, Almouzni G (2004) Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair (Amst) 3:969–978

    Article  CAS  Google Scholar 

  • Krause DR, Jonnalagadda JC, Gatei MH, Sillje HH, Zhou BB, Nigg EA, Khanna K (2003) Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 22:5927–5937

    Article  PubMed  CAS  Google Scholar 

  • Krawitz DC, Kama T, Kaufman PD (2002) Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 22:614–625

    Article  PubMed  CAS  Google Scholar 

  • Krude T (1995) Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp Cell Res 220:304–311

    Article  PubMed  CAS  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    Article  PubMed  CAS  Google Scholar 

  • Lewis LK, Karthikeyan G, Cassiano J, Resnick MA (2005) Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 33:4928–4939

    Article  PubMed  CAS  Google Scholar 

  • Linger JG, Tyler JK (2005) The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171(4):1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  PubMed  CAS  Google Scholar 

  • Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298

    Article  PubMed  CAS  Google Scholar 

  • Meeks-Wagner D, Hartwell LH (1986) Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44:43–52

    Article  PubMed  CAS  Google Scholar 

  • Meijsing SH, Ehrenhofer-Murray AE (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 15:3169–3182

    Article  PubMed  CAS  Google Scholar 

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334

    Article  PubMed  CAS  Google Scholar 

  • Moggs JG, Grandi P, Quivy JP, Jonsson ZO, Hubscher U, Becker PB, Almouzni G (2000) A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20:1206–1218

    Article  PubMed  CAS  Google Scholar 

  • Mosammaparast N, Ewart CS, Pemberton LF (2002a) A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J 21:6527–6538

    Article  PubMed  CAS  Google Scholar 

  • Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF (2002b) Pathways mediating the nuclear import of histones H3 and H4 in yeast. J Biol Chem 277:862–868

    Article  PubMed  CAS  Google Scholar 

  • Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16:2621–2626

    Article  PubMed  CAS  Google Scholar 

  • Mousson F, Lautrette A, Thuret JY, Agez M, Courbeyrette R, Amigues B, Becker E, Neumann JM, Guerois R, Mann C, Ochsenbein F (2005) Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc Natl Acad Sci USA 102:5975–5980

    Article  PubMed  CAS  Google Scholar 

  • Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233

    Article  PubMed  CAS  Google Scholar 

  • Myung K, Pennaneach V, Kats ES, Kolodner RD (2003) Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci USA 100:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Nelson DM, Ye X, Hall C, Santos H, Ma T, Kao GD, Yen TJ, Harper JW, Adams PD (2002) Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol Cell Biol 22:7459–7472

    Article  PubMed  CAS  Google Scholar 

  • Osada S, Sutton A, Muster N, Brown CE, Yates JR 3rd, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15:3155–3168

    Article  PubMed  CAS  Google Scholar 

  • Osada S, Kurita M, Nishikawa J, Nishihara T (2005) Chromatin assembly factor Asf1p-dependent occupancy of the SAS histone acetyltransferase complex at the silent mating-type locus HMLalpha. Nucleic Acids Res 33:2742–2750

    Article  PubMed  CAS  Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan B, Kataoka K, Umehara T, Adachi N, Yokoyama S, Horikoshi M (2005) Structural similarity between histone chaperone Cia1p/Asf1p and DNA-binding protein NF-{kappa}B. J Biochem (Tokyo) 138:821–829

    CAS  Google Scholar 

  • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7:293–300

    Article  PubMed  CAS  Google Scholar 

  • Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KW (2003) Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 532:173–203

    PubMed  CAS  Google Scholar 

  • Prado F, Cortes-Ledesma F, Aguilera A (2004) The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep 5(5):497–502

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22:8353–8365

    Article  PubMed  CAS  Google Scholar 

  • Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK (2004) Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 24:10313–10327

    Article  PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, Zhang X, Garcia BA, Shabanowitz J, Burlingame AL, Hunt DF, Kaufman PD, Allis CD (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci USA 103:6988–6993

    Article  PubMed  CAS  Google Scholar 

  • Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, O’Rand MG (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J Biol Chem 275:30378–30386

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360

    Article  PubMed  CAS  Google Scholar 

  • Sanematsu F, Takami Y, Barman HK, Fukagawa T, Ono T, Shibahara K, Nakayama T (2006) Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J Biol Chem 281:13817–13827

    Article  PubMed  CAS  Google Scholar 

  • Schermer UJ, Korber P, Horz W (2005) Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol Cell 19:279–285

    Article  PubMed  CAS  Google Scholar 

  • Schulz LL, Tyler JK (2006) The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J 20(3):488–490

    PubMed  CAS  Google Scholar 

  • Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by rna polymerase II. Mol Cell 22:415–422

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MF, Lee SJ, Duong JK, Eminaga S, Stern DF (2003) FHA domain-mediated DNA checkpoint regulation of Rad53. Cell Cycle 2:384–396

    PubMed  CAS  Google Scholar 

  • Sharp JA, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11:463–473

    Article  PubMed  CAS  Google Scholar 

  • Sharp JA, Rizki G, Kaufman PD (2005) Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 171(3):885–889

    Article  PubMed  CAS  Google Scholar 

  • Sherwood PW, Tsang SV, Osley MA (1993) Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 13:28–38

    PubMed  CAS  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585

    Article  PubMed  CAS  Google Scholar 

  • Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  • Sillje HH, Nigg EA (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632

    PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Stahl H, Koller T, Knippers R (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189:189–204

    Article  PubMed  CAS  Google Scholar 

  • Spector MS, Raff A, DeSilva H, Lee K, Osley MA (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol 17:545–552

    PubMed  CAS  Google Scholar 

  • Suka N, Luo K, Grunstein M (2002) Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32:378–383

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Fay DS, Marini F, Foiani M, Stern DF (1996) Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev 10:395–406

    Article  PubMed  CAS  Google Scholar 

  • Sutton A, Bucaria J, Osley MA, Sternglanz R (2001) Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158:587–596

    PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  PubMed  CAS  Google Scholar 

  • Tamburini BA, Carson JJ, Adkins MW, Tyler JK (2005) Functional conservation and specialization among Eukaryotic anti-silencing function 1 histone chaperones. Eukaryot Cell 4:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R (2006) Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 13:921–929

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21:6574–6584

    Article  PubMed  CAS  Google Scholar 

  • Umehara T, Horikoshi M (2003) Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis. J Biol Chem 278:35660–35667

    Article  PubMed  CAS  Google Scholar 

  • Umehara T, Chimura T, Ichikawa N, Horikoshi M (2002) Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro. Genes Cells 7:59–73

    Article  PubMed  CAS  Google Scholar 

  • Verreault A (2000) De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev 14:1430–1438

    PubMed  CAS  Google Scholar 

  • Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385

    Article  PubMed  CAS  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  PubMed  CAS  Google Scholar 

  • Zabaronick SR, Tyler JK (2005) The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase. Mol Cell Biol 25:652–660

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Rothstein R (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA 99:3746–3751

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20:3544–3553

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Madden BJ, Muddiman DC, Zhang Z (2006) Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 45:2852–2861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean-Michel Neumann for valuable comments on the manuscript. We thank Geneviève Almouzni for her enthusiasm and encouragement. This work was supported by a PIC CEA/Institut Curie on Epigenetic parameters in DNA damage response and the cell cycle, an ARC grant (4470) awarded to C.M. and an ARC grant (3828) awarded to F.O.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Françoise Ochsenbein or Carl Mann.

Additional information

Communicated by G. Almouzni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousson, F., Ochsenbein, F. & Mann, C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116, 79–93 (2007). https://doi.org/10.1007/s00412-006-0087-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0087-z

Keywords

Navigation