Skip to main content

Advertisement

Log in

Exploring the potential role for extended reality in Mohs micrographic surgery

  • REVIEW
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Mohs micrographic surgery (MMS) is a cornerstone of dermatological practice. Virtual reality (VR) and augmented reality (AR) technology, initially used for entertainment, have entered healthcare, offering real-time data overlaying a surgeon’s view. This paper explores potential applications of VR and AR in MMS, emphasizing their advantages and limitations. We aim to identify research gaps to facilitate innovation in dermatological surgery. We conducted a PubMed search using the following: “augmented reality” OR “virtual reality” AND “Mohs” or “augmented reality” OR “virtual reality” AND “surgery.” Inclusion criteria were peer-reviewed articles in English discussing these technologies in medical settings. We excluded non-peer-reviewed sources, non-English articles, and those not addressing these technologies in a medical context. VR alleviates patient anxiety and enhances patient satisfaction while serving as an educational tool. It also aids physicians by providing realistic surgical simulations. On the other hand, AR assists in real-time lesion analysis, optimizing incision planning, and refining margin control during surgery. Both of these technologies offer remote guidance for trainee residents, enabling real-time learning and oversight and facilitating synchronous teleconsultations. These technologies may transform dermatologic surgery, making it more accessible and efficient. However, further research is needed to validate their effectiveness, address potential challenges, and optimize seamless integration. All in all, AR and VR enhance real-world environments with digital data, offering real-time surgical guidance and medical insights. By exploring the potential integration of these technologies in MMS, our study identifies avenues for further research to thoroughly understand the role of these technologies to redefine dermatologic surgery, elevating precision, surgical outcomes, and patient experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data and materials used in this study are available upon request.

References

  1. Trost LB, Bailin PL (2011) History of Mohs surgery. Dermatol Clin 29(2):135–139. https://doi.org/10.1016/j.det.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  2. Yeung AWK, Tosevska A, Klager E et al (2021) Virtual and augmented reality applications in medicine: analysis of the scientific literature. J Med Internet Res 23(2):e25499. https://doi.org/10.2196/25499

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan HHL, Haerle SK, Daly MJ et al (2021) An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance. PLoS ONE 16(4):e0250558. https://doi.org/10.1371/journal.pone.0250558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khor WS, Baker B, Amin K, Chan A, Patel K, Wong J (2016) Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls. Ann Transl Med 4(23):454. https://doi.org/10.21037/atm.2016.12.23

    Article  PubMed  PubMed Central  Google Scholar 

  5. Venkatesan M, Mohan H, Ryan JR et al (2021) Virtual and augmented reality for biomedical applications. Cell Rep Med 2(7):100348. https://doi.org/10.1016/j.xcrm.2021.100348

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cipresso P, Giglioli IAC, Raya MA, Riva G (2018) The past, present, and future of virtual and augmented reality research: a network and cluster analysis of the literature. Front Psychol 9:2086. https://doi.org/10.3389/fpsyg.2018.02086

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scarfe P, Glennerster A (2019) The science behind virtual reality displays. Annu Rev Vis Sci 5:529–547. https://doi.org/10.1146/annurev-vision-091718-014942

    Article  PubMed  Google Scholar 

  8. Zheng JM, Chan KW, Gibson I (1998) Virtual reality. IEEE Potentials 17(2):20–23. https://doi.org/10.1109/45.666641

    Article  Google Scholar 

  9. Carmigniani J, Furht B (2011) Augmented reality: an overview. In: Furht B (ed) Handbook of augmented reality. New York, Springer, pp 3–46

    Chapter  Google Scholar 

  10. Vávra P, Roman J, Zonča P et al (2017) Recent development of augmented reality in surgery: a review. J Healthc Eng 2017:4574172. https://doi.org/10.1155/2017/4574172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shakur SF, Luciano CJ, Kania P et al (2015) Usefulness of a virtual reality percutaneous trigeminal rhizotomy simulator in neurosurgical training. Neurosurgery 11(Suppl 3):420–425. https://doi.org/10.1227/NEU.0000000000000853. (discussion 425)

    Article  PubMed  Google Scholar 

  12. LeBlanc F, Champagne BJ, Augestad KM et al (2010) A comparison of human cadaver and augmented reality simulator models for straight laparoscopic colorectal skills acquisition training. J Am Coll Surg 211(2):250–255. https://doi.org/10.1016/j.jamcollsurg.2010.04.002

    Article  PubMed  Google Scholar 

  13. Lahanas V, Loukas C, Smailis N, Georgiou E (2015) A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surg Endosc 29(8):2224–2234. https://doi.org/10.1007/s00464-014-3930-y

    Article  PubMed  Google Scholar 

  14. Vera AM, Russo M, Mohsin A, Tsuda S (2014) Augmented reality telementoring (ART) platform: a randomized controlled trial to assess the efficacy of a new surgical education technology. Surg Endosc 28(12):3467–3472. https://doi.org/10.1007/s00464-014-3625-4

    Article  PubMed  Google Scholar 

  15. Profeta AC, Schilling C, McGurk M (2016) Augmented reality visualization in head and neck surgery: an overview of recent findings in sentinel node biopsy and future perspectives. Br J Oral Maxillofac Surg 54(6):694–696. https://doi.org/10.1016/j.bjoms.2015.11.008

    Article  PubMed  Google Scholar 

  16. Shenai MB, Dillavou M, Shum C et al (2011) Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance. Neurosurgery 68(1 Suppl):200–207. https://doi.org/10.1227/NEU.0b013e3182077efd. (discussion 207)

    Article  PubMed  Google Scholar 

  17. Davis MC, Can DD, Pindrik J, Rocque BG, Johnston JM (2016) Virtual interactive presence in global surgical education: international collaboration through augmented reality. World Neurosurg 86:103–111. https://doi.org/10.1016/j.wneu.2015.08.053

    Article  PubMed  Google Scholar 

  18. Dinh A, Yin AL, Estrin D, Greenwald P, Fortenko A (2023) Augmented reality in real-time telemedicine and telementoring: scoping review. JMIR MHealth UHealth 11:e45464. https://doi.org/10.2196/45464

    Article  PubMed  PubMed Central  Google Scholar 

  19. Besharati Tabrizi L, Mahvash M (2015) Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg 123(1):206–211. https://doi.org/10.3171/2014.9.JNS141001

    Article  PubMed  Google Scholar 

  20. Qu M, Hou Y, Xu Y et al (2015) Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. J Cranio-Maxillo-fac Surg Off Publ Eur Assoc Cranio-Maxillo-fac Surg 43(1):106–112. https://doi.org/10.1016/j.jcms.2014.10.019

    Article  Google Scholar 

  21. Müller M, Rassweiler MC, Klein J et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675. https://doi.org/10.1007/s11548-013-0828-4

    Article  PubMed  Google Scholar 

  22. Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P (2011) Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepato-Biliary-Pancreat Sci 18(4):506–509. https://doi.org/10.1007/s00534-011-0385-6

    Article  Google Scholar 

  23. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J (2015) Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg 400(3):381–385. https://doi.org/10.1007/s00423-014-1256-9

    Article  PubMed  Google Scholar 

  24. Souzaki R, Ieiri S, Uemura M et al (2013) An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J Pediatr Surg 48(12):2479–2483. https://doi.org/10.1016/j.jpedsurg.2013.08.025

    Article  PubMed  Google Scholar 

  25. Gonzalez SJ, Guo Y, Lee MC (2014) Feasibility of augmented reality glasses for real-time, 3-Dimensional (3D) intraoperative guidance. J Am Coll Surg 219(3):S64. https://doi.org/10.1016/j.jamcollsurg.2014.07.148

    Article  Google Scholar 

  26. Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. (2022) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings. Part 8. Springer

  27. Zhu M, Chai G, Zhang Y, Ma X, Gan J (2011) Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy. J Craniofac Surg 22(5):1806–1809. https://doi.org/10.1097/SCS.0b013e31822e8064

    Article  PubMed  Google Scholar 

  28. Wagner A, Rasse M, Millesi W, Ewers R (1997) Virtual reality for orthognathic surgery: the augmented reality environment concept. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 55(5):456–462. https://doi.org/10.1016/s0278-2391(97)90689-3. (discussion 462-463)

    Article  CAS  Google Scholar 

  29. Lin L, Shi Y, Tan A et al (2016) Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms–a feasibility study. J Cranio-Maxillo-fac Surg Off Publ Eur Assoc Cranio-Maxillo-fac Surg 44(2):215–223. https://doi.org/10.1016/j.jcms.2015.10.024

    Article  Google Scholar 

  30. Fischer M, Fuerst B, Lee SC et al (2016) Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg 11(6):1007–1014. https://doi.org/10.1007/s11548-016-1363-x

    Article  PubMed  Google Scholar 

  31. Kersten-Oertel M, Gerard I, Drouin S et al (2015) Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. Int J Comput Assist Radiol Surg 10(11):1823–1836. https://doi.org/10.1007/s11548-015-1163-8

    Article  PubMed  Google Scholar 

  32. Blackwell M, Morgan F, DiGioia AM (1998) Augmented reality and its future in orthopaedics. Clin Orthop 354:111–122. https://doi.org/10.1097/00003086-199809000-00014

    Article  Google Scholar 

  33. Balaphas A, Buchs NC, Meyer J, Hagen ME, Morel P (2015) Partial splenectomy in the era of minimally invasive surgery: the current laparoscopic and robotic experiences. Surg Endosc 29(12):3618–3627. https://doi.org/10.1007/s00464-015-4118-9

    Article  PubMed  Google Scholar 

  34. Obagi ZA, Rundle CW, Dellavalle RP (2020) Widening the scope of virtual reality and augmented reality in dermatology. Dermatol Online J. https://doi.org/10.5070/D3261047183

    Article  PubMed  Google Scholar 

  35. Sharma P, Vleugels RA, Nambudiri VE (2019) Augmented reality in dermatology: are we ready for AR? J Am Acad Dermatol 81(5):1216–1222. https://doi.org/10.1016/j.jaad.2019.07.008

    Article  PubMed  Google Scholar 

  36. Prado G, Kovarik C (2018) Cutting edge technology in dermatology: virtual reality and artificial intelligence. Cutis 101(4):236–237

    PubMed  Google Scholar 

  37. Noll C, Von Jan U, Raap U, Albrecht UV (2017) Mobile augmented reality as a feature for self-oriented, blended learning in medicine: randomized controlled trial. JMIR MHealth UHealth 5(9):e139. https://doi.org/10.2196/mhealth.7943

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aldridge RB, Li X, Ballerini L, Fisher RB, Rees JL (2010) Teaching dermatology using 3-dimensional virtual reality. Arch Dermatol 146(10):1184–1185. https://doi.org/10.1001/archdermatol.2010.294. (author reply 1185-1186)

    Article  PubMed  Google Scholar 

  39. Kantor J (2015) Application of Google Glass to Mohs micrographic surgery: a pilot study in 120 patients. Dermatol Surg Off Publ Am Soc Dermatol Surg Al 41(2):288–289. https://doi.org/10.1097/DSS.0000000000000268

    Article  CAS  Google Scholar 

  40. Gladstone HB, Raugi GJ, Berg D, Berkley J, Weghorst S, Ganter M (2000) Virtual reality for dermatologic surgery: virtually a reality in the 21st century. J Am Acad Dermatol 42(1 Pt 1):106–112. https://doi.org/10.1016/s0190-9622(00)90017-3

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, Blalock TW (2018) Measuring cutaneous lesions: trends in clinical practice. Dermatol Surg Off Publ Am Soc Dermatol Surg Al 44(3):383–387. https://doi.org/10.1097/DSS.0000000000001309

    Article  CAS  Google Scholar 

  42. Higgins S, Feinstein S, Hawkins M, Cockburn M, Wysong A (2019) Virtual reality to improve the experience of the Mohs patient-a prospective interventional study. Dermatol Surg Off Publ Am Soc Dermatol Surg Al 45(8):1009–1018. https://doi.org/10.1097/DSS.0000000000001854

    Article  CAS  Google Scholar 

  43. Rodríguez-Jiménez P, Ruiz-Rodríguez R (2020) Augmented reality in Mohs micrographic surgery. Int J Dermatol 59(1):e22–e23. https://doi.org/10.1111/ijd.14659

    Article  PubMed  Google Scholar 

  44. Berg D, Raugi G, Gladstone H et al (2001) Virtual reality simulators for dermatologic surgery: measuring their validity as a teaching tool. Dermatol Surg Off Publ Am Soc Dermatol Surg Al 27(4):370–374. https://doi.org/10.1046/j.1524-4725.2001.00323.x

    Article  CAS  Google Scholar 

  45. Sutherland C, Hashtrudi-Zaad K, Sellens R, Abolmaesumi P, Mousavi P (2013) An augmented reality haptic training simulator for spinal needle procedures. IEEE Trans Biomed Eng 60(11):3009–3018. https://doi.org/10.1109/TBME.2012.2236091

    Article  PubMed  Google Scholar 

  46. Sudra G, Speidel S, Platzek S, Müller-Stich BP, Dillmann R (2008) Augmented reality assistance for realization of incision planning and model-based analysis of the modified surface model. Stud Health Technol Inform 132:505–507

    PubMed  Google Scholar 

  47. Chan HHL, Sahovaler A, Daly MJ et al (2022) Projected cutting guides using an augmented reality system to improve surgical margins in maxillectomies: a preclinical study. Oral Oncol 127:105775. https://doi.org/10.1016/j.oraloncology.2022.105775

    Article  Google Scholar 

  48. Ai D, Yang J, Fan J et al (2016) Augmented reality based real-time subcutaneous vein imaging system. Biomed Opt Express 7(7):2565–2585. https://doi.org/10.1364/BOE.7.002565

    Article  PubMed  PubMed Central  Google Scholar 

  49. Greenfield MJ, Luck J, Billingsley ML et al (2018) Demonstration of the effectiveness of augmented reality telesurgery in complex hand reconstruction in Gaza. Plast Reconstr Surg Glob Open 6(3):e1708. https://doi.org/10.1097/GOX.0000000000001708

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bonmarin M, Läuchli S, Navarini A (2022) Augmented and virtual reality in dermatology—where do we stand and what comes next? Dermato 2(1):1–7. https://doi.org/10.3390/dermato2010001

    Article  Google Scholar 

  51. Lessick S, Kraft M (2017) Facing reality: the growth of virtual reality and health sciences libraries. J Med Libr Assoc JMLA 105(4):407–417. https://doi.org/10.5195/jmla.2017.329

    Article  PubMed  Google Scholar 

  52. Izard SG, Juanes JA, García Peñalvo FJ, Estella JMG, Ledesma MJS, Ruisoto P (2018) Virtual reality as an educational and training tool for medicine. J Med Syst 42(3):50. https://doi.org/10.1007/s10916-018-0900-2

    Article  PubMed  Google Scholar 

  53. Parsons D, MacCallum K (2021) Current perspectives on augmented reality in medical education: applications, affordances and limitations. Adv Med Educ Pract 12:77–91. https://doi.org/10.2147/AMEP.S249891

    Article  PubMed  PubMed Central  Google Scholar 

  54. McCloskey K, Turlip R, Ahmad HS, Ghenbot YG, Chauhan D, Yoon JW (2023) Virtual and augmented reality in spine surgery: a systematic review. World Neurosurg 173:96–107. https://doi.org/10.1016/j.wneu.2023.02.068

    Article  PubMed  Google Scholar 

  55. Kaplan N, Marques M, Scharf I et al (2023) Virtual reality and augmented reality in plastic and craniomaxillofacial surgery: a scoping review. Bioeng Basel Switz 10(4):480. https://doi.org/10.3390/bioengineering10040480

    Article  Google Scholar 

  56. Bruno RR, Wolff G, Wernly B et al (2022) Virtual and augmented reality in critical care medicine: the patient’s, clinician’s, and researcher’s perspective. Crit Care Lond Engl 26(1):326. https://doi.org/10.1186/s13054-022-04202-x

    Article  Google Scholar 

  57. Jung C, Wolff G, Wernly B et al (2022) Virtual and augmented reality in cardiovascular care: state-of-the-art and future perspectives. JACC Cardiovasc Imaging 15(3):519–532. https://doi.org/10.1016/j.jcmg.2021.08.017

    Article  PubMed  Google Scholar 

  58. Linte CA, Davenport KP, Cleary K et al (2013) On mixed reality environments for minimally invasive therapy guidance: systems architecture, successes and challenges in their implementation from laboratory to clinic. Comput Med Imaging Graph Off J Comput Med Imaging Soc 37(2):83–97. https://doi.org/10.1016/j.compmedimag.2012

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AP made substantial contributions to the design of the research paper, analysis and interpretation of data, and reviewing it critically to ensure emphasis of important educational content. AP, YA, DJ, and MH contributed to writing the manuscript and reviewing the final draft. KN reviewed and approved the final draft to be published with his expertise.

Corresponding author

Correspondence to Anika Pulumati.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest, both financial and non-financial, in relation to this work.

Ethics approval

This literature review did not involve the use of patient data and thus, no ethics approval was required.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulumati, A., Algarin, Y.A., Jaalouk, D. et al. Exploring the potential role for extended reality in Mohs micrographic surgery. Arch Dermatol Res 316, 67 (2024). https://doi.org/10.1007/s00403-023-02804-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-023-02804-1

Keywords

Navigation