Skip to main content

Advertisement

Log in

Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients’ survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E et al (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213:2315–2331. https://doi.org/10.1084/jem.20151193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S et al (2018) EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell 45:681–695.e4. https://doi.org/10.1016/j.devcel.2018.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alyamkina EA, Nikolin VP, Popova NA, Minkevich AM, Kozel AV, Dolgova EV et al (2015) Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int 15:1–14. https://doi.org/10.1186/s12935-015-0180-6

    Article  CAS  Google Scholar 

  4. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham

    Google Scholar 

  5. Athale UH, Duckworth J, Odame I, Barr R (2009) Childhood atypical teratoid rhabdoid tumor of the central nervous system: a meta-analysis of observational studies. J Pediatr Hematol Oncol 31:651–663. https://doi.org/10.1097/MPH.0b013e3181b258a9

    Article  PubMed  Google Scholar 

  6. Barkas N, Petukhov V, Nikolaeva D, Lozinsky Y, Demharter S, Khodosevich K, Kharchenko PV (2019) Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat Methods 16:695–698. https://doi.org/10.1038/s41592-019-0466-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartelheim K, Nemes K, Seeringer A, Kerl K, Buechner J, Boos J et al (2016) Improved 6-year overall survival in AT/RT—results of the registry study Rhabdoid 2007. Cancer Med 5:1765–1775. https://doi.org/10.1002/cam4.741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. https://doi.org/10.1016/j.ccr.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  9. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    CAS  PubMed  Google Scholar 

  10. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF et al (2016) Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 17:2445–2459. https://doi.org/10.1016/j.celrep.2016.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325. https://doi.org/10.1038/nature08712

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278. https://doi.org/10.1158/0008-5472.CAN-16-2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi J, Mai N, Jackson C, Belcaid Z, Lim M (2018) It takes two: potential therapies and insights involving microglia and macrophages in glioblastoma. Neuroimmunol Neuroinflammation 5:42. https://doi.org/10.20517/2347-8659.2018.47

    Article  CAS  Google Scholar 

  15. Crotti A, Ransohoff RM (2016) Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44:505–515. https://doi.org/10.1016/j.immuni.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  16. Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107:796–805. https://doi.org/10.1182/blood-2005-05-1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Li G, Zhang X, Dai F, Zhang R (2018) Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett 16:4821–4828. https://doi.org/10.3892/ol.2018.9293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448. https://doi.org/10.1016/S1535-6108(03)00114-4

    Article  CAS  PubMed  Google Scholar 

  19. Dunning M, Lynch A, Eldridge M (2015) IlluminaHumanv4. db: illumina humanHT12v4 annotation data (chip illuminahumanv4). R package version 1(0)

  20. Dunning MJ, Smith ML, Ritchie ME, Tavaré S (2007) Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23:2183–2184. https://doi.org/10.1093/bioinformatics/btm311

    Article  CAS  PubMed  Google Scholar 

  21. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ et al (2012) Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS ONE 7:e42064. https://doi.org/10.1371/journal.pone.0042064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang M, Yuan J, Peng C, Li Y (2014) Collagen as a double-edged sword in tumor progression. Tumor Biol 35:2871–2882. https://doi.org/10.1007/s13277-013-1511-7

    Article  CAS  Google Scholar 

  25. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:1–13. https://doi.org/10.1186/s13059-015-0844-5

    Article  CAS  Google Scholar 

  26. Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT et al (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:1–16. https://doi.org/10.1126/sciadv.aat7828

    Article  CAS  Google Scholar 

  27. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. https://doi.org/10.1016/S1074-7613(03)00174-2

    Article  CAS  PubMed  Google Scholar 

  28. Gibbons DL, Creighton CJ (2018) Pan-cancer survey of epithelial–mesenchymal transition markers across the Cancer Genome Atlas. Dev Dyn 247:555–564. https://doi.org/10.1002/dvdy.24485

    Article  CAS  PubMed  Google Scholar 

  29. Ginn KF, Gajjar A (2012) Atypical teratoid rhabdoid tumor: current therapy and future directions. Front Oncol 2:1–13. https://doi.org/10.3389/fonc.2012.00114

    Article  Google Scholar 

  30. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K et al (2001) Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand J Immunol 53:386–392. https://doi.org/10.1046/j.1365-3083.2001.00885.x

    Article  CAS  PubMed  Google Scholar 

  31. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–271.e6. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Han ZY, Richer W, Fréneaux P, Chauvin C, Lucchesi C, Guillemot D et al (2016) The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nat Commun 7:10421. https://doi.org/10.1038/ncomms10421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huysentruyt LC, Akgoc Z, Seyfried TN (2011) Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN Neuro 3:183–193. https://doi.org/10.1042/AN20110011

    Article  CAS  Google Scholar 

  34. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al (2016) Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29:379–393. https://doi.org/10.1016/j.ccell.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  35. Kolde R, Kolde MR (2015) Package ‘pheatmap’. R Package 1(7)

  36. Kwak MS, Yu SJ, Yoon JH, Lee SH, Lee SM, Lee JH et al (2015) Synergistic anti-tumor efficacy of doxorubicin and flavopiridol in an in vivo hepatocellular carcinoma model. J Cancer Res Clin Oncol 141:2037–2045. https://doi.org/10.1007/s00432-015-1990-6

    Article  CAS  PubMed  Google Scholar 

  37. Lausen B, Hothorn T, Bretz F, Schumacher M (2004) Assessment of optimal selected prognostic factors. Biom J 46:364–374. https://doi.org/10.1002/bimj.200310030

    Article  Google Scholar 

  38. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ledford JG, Kovarova M, Koller BH (2007) Impaired host defense in mice lacking ONZIN. J Immunol 178:5132–5143. https://doi.org/10.4049/jimmunol.178.8.5132

    Article  CAS  PubMed  Google Scholar 

  40. Lewis ND, Hill JD, Juchem KW, Stefanopoulos DE, Modis LK (2014) RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol 277:26–38. https://doi.org/10.1016/j.jneuroim.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  41. Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS (2018) MALAT1: a potential biomarker in cancer. Cancer Manag Res 10:6757–6768. https://doi.org/10.2147/CMAR.S169406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindström A, Midtbö K, Arnesson LG, Garvin S, Shabo I (2017) Fusion between M2-macrophages and cancer cells results in a subpopulation of radioresistant cells with enhanced DNA-repair capacity. Oncotarget 8:51370–51386. https://doi.org/10.18632/oncotarget.17986

    Article  PubMed  PubMed Central  Google Scholar 

  43. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  44. Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC (2019) EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol 20:1–9. https://doi.org/10.1186/s13059-019-1662-y

    Article  Google Scholar 

  45. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E et al (2018) Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun 9:4845. https://doi.org/10.1038/s41467-018-07295-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by Galectin-3. J Immunol 180:2650–2658. https://doi.org/10.4049/jimmunol.180.4.2650

    Article  CAS  PubMed  Google Scholar 

  47. Mak MP, Tong P, Diao L, Cardnell RJ, Gibbons DL, William WN et al (2016) A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res 22:609–620. https://doi.org/10.1158/1078-0432.CCR-15-0876

    Article  CAS  PubMed  Google Scholar 

  48. Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW, Mammoto A (2013) Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol 183:1293–1305. https://doi.org/10.1016/j.ajpath.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matcovitch-Natan O, Winter, Giladi A, Aguilar SV, Spinrad A, Sarrazin S et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science (80) 353:aad8670. https://doi.org/10.1126/science.aad8670

    Article  CAS  Google Scholar 

  50. Maximov V, Chen Z, Wei Y, Robinson MH, Herting CJ, Shanmugam NS et al (2019) Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-10458-9

    Article  CAS  Google Scholar 

  51. McInnes L, Healy J, Melville J (2018) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426v2

  52. Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A et al (2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18:1–14. https://doi.org/10.1186/s13059-017-1362-4

    Article  CAS  Google Scholar 

  53. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24. https://doi.org/10.1016/j.matbio.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  54. Némati F, Daniel C, Arvelo F, Legrier ME, Froget B, Livartowski A et al (2010) Clinical relevance of human cancer xenografts as a tool for preclinical assessment: example of in vivo evaluation of topotecan-based chemotherapy in a panel of human small-cell lung cancer xenografts. Anticancer Drugs 21:25–32. https://doi.org/10.1097/CAD.0b013e3283300a29

    Article  CAS  PubMed  Google Scholar 

  55. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG Island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288–300. https://doi.org/10.1016/j.ccr.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT et al (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–522. https://doi.org/10.1016/j.ccell.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH (2011) Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res 71:1497–1505. https://doi.org/10.1158/0008-5472.CAN-10-3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18:385–392. https://doi.org/10.1038/ni.3703

    Article  CAS  PubMed  Google Scholar 

  62. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611–1624.e24. https://doi.org/10.1016/j.cell.2017.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA et al (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982. https://doi.org/10.1038/nmeth.4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reichert M, Bakir B, Moreira L, Pitarresi JR, Feldmann K, Simon L et al (2018) Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Dev Cell 45:696–711.e8. https://doi.org/10.1016/j.devcel.2018.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reinhard H, Reinert J, Beier R, Furtwängler R, Alkasser M, Rutkowski S et al (2008) Rhabdoid tumors in children: prognostic factors in 70 patients diagnosed in Germany. Oncol Rep 19:819–823. https://doi.org/10.3892/or.19.3.819

    Article  PubMed  Google Scholar 

  66. Rokavec M, Kaller M, Horst D, Hermeking H (2017) Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep 7:4687. https://doi.org/10.1038/s41598-017-04234-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L et al (2017) MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol. https://doi.org/10.1038/icb.2017.18

    Article  PubMed  Google Scholar 

  68. Schneppenheim R, Frühwald MC, Gesk S, Hasselblatt M, Jeibmann A, Kordes U et al (2010) Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 86:279–284. https://doi.org/10.1016/j.ajhg.2010.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seitz G, Warmann SW, Vokuhl CO, Heitmann H, Treuner C, Leuschner I et al (2007) Effects of standard chemotherapy on tumor growth and regulation of multidrug resistance genes and proteins in childhood rhabdomyosarcoma. Pediatr Surg Int 23:431–439. https://doi.org/10.1007/s00383-006-1852-z

    Article  PubMed  Google Scholar 

  70. Shabo I, Midtbö K, Andersson H, Åkerlund E, Olsson H, Wegman P et al (2015) Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction. BMC Cancer 15:1–11. https://doi.org/10.1186/s12885-015-1935-0

    Article  Google Scholar 

  71. Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P et al (2018) Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat Commun 9:1–16. https://doi.org/10.1038/s41467-018-07548-5

    Article  CAS  Google Scholar 

  72. Sierra-Filardi E, Nieto C, Domínguez-Soto Á, Barroso R, Sánchez-Mateos P, Puig-Kroger A et al (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192:3858–3867. https://doi.org/10.4049/jimmunol.1302821

    Article  CAS  PubMed  Google Scholar 

  73. Soneson C, Love MI, Robinson MD (2016) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4:1521. https://doi.org/10.12688/f1000research.7563.2

    Article  PubMed Central  Google Scholar 

  74. Sorokin L, Sonnenberg A, Aumailley M, Timpl R, Ekblom P (1990) Recognition of the laminin E8 cell-binding site by an integrin possessing the α6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol 111:1265–1273. https://doi.org/10.1083/jcb.111.3.1265

    Article  CAS  PubMed  Google Scholar 

  75. Stanam A, Gibson-Corley KN, Love-Homan L, Ihejirika N, Simons AL, Carver LA (2016) Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma. Oncotarget 7:76087–76100. https://doi.org/10.18632/oncotarget.12590

    Article  PubMed  PubMed Central  Google Scholar 

  76. Strojnik T, Kavalar R, Zajc I, Diamandis EP, Oikonomopoulou K, Lah TT (2009) Prognostic impact of CD68 and kallikrein 6 in human glioma. Anticancer Res 29:3269–3279

    CAS  PubMed  Google Scholar 

  77. Su S, Liu Q, Chen J, Chen J, Chen F, He C et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–620. https://doi.org/10.1016/j.ccr.2014.03.021

    Article  CAS  PubMed  Google Scholar 

  78. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T et al (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10:1–27. https://doi.org/10.1371/journal.pone.0116644

    Article  CAS  Google Scholar 

  79. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science (80-) 352:189–196. https://doi.org/10.1126/science.aad0501

    Article  CAS  Google Scholar 

  80. Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO et al (2019) Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J Cell Biol 218:3827–3844. https://doi.org/10.1083/jcb.201904051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Torchia J, Golbourn B, Feng S, Ho KC, Sin-Chan P, Vasiljevic A et al (2016) Integrated (epi)-Genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 30:891–908. https://doi.org/10.1016/j.ccell.2016.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torchia J, Picard D, Lafay-Cousin L, Hawkins CE, Kim SK, Letourneau L et al (2015) Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol 16:569–582. https://doi.org/10.1016/S1470-2045(15)70114-2

    Article  CAS  PubMed  Google Scholar 

  83. Veerman RE, Güçlüler Akpinar G, Eldh M, Gabrielsson S (2019) Immune cell-derived extracellular vesicles—functions and therapeutic applications. Trends Mol/ Med 25:382–394. https://doi.org/10.1016/j.molmed.2019.02.003

    Article  CAS  Google Scholar 

  84. Vellinga TT, Den Uil S, Rinkes IHB, Marvin D, Ponsioen B, Alvarez-Varela A et al (2016) Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene 35:5263–5271. https://doi.org/10.1038/onc.2016.60

    Article  CAS  PubMed  Google Scholar 

  85. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG et al (2017) Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science (80-) 355:eaai8478. https://doi.org/10.1126/science.aai8478

    Article  CAS  Google Scholar 

  86. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB et al (2018) Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563:347–353. https://doi.org/10.1038/s41586-018-0698-6

    Article  CAS  PubMed  Google Scholar 

  87. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15:188–193. https://doi.org/10.1016/j.tcb.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  89. Voloshin T, Alishekevitz D, Kaneti L, Miller V, Isakov E, Kaplanov I et al (2015) Blocking IL1β pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis. Mol Cancer Ther 14:1385–1394. https://doi.org/10.1158/1535-7163.MCT-14-0969

    Article  CAS  PubMed  Google Scholar 

  90. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wes PD, Holtman IR, Boddeke EWGM, Möller T, Eggen BJL (2016) Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64:197–213. https://doi.org/10.1002/glia.22866

    Article  PubMed  Google Scholar 

  92. Yang XY, Zhang MY, Zhou Q, Wu SY, Gu WY, Zhao Y et al (2016) High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway. Onco Targets Ther 9:4887–4899. https://doi.org/10.2147/OTT.S101594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25:675–686. https://doi.org/10.1016/j.tcb.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Q, Liu L, Gong C, Shi H, Zeng Y, Wang X et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7:e50946. https://doi.org/10.1371/journal.pone.0050946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang Y, Zhou N, Yu X, Zhang X, Li S, Lei Z et al (2017) Tumacrophage: macrophages transformed into tumor stem-like cells by virulent genetic material from tumor cells. Oncotarget 8:82326–82343. https://doi.org/10.18632/oncotarget.19320

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao M, Kong L, Liu Y, Qu H (2015) DbEMT: an epithelial-mesenchymal transition associated gene resource. Sci Rep 5:11459. https://doi.org/10.1038/srep11459

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the K.K. lab for discussions and critical reading of the manuscript. We thank Annegret Rosemann and Elisabeth Jung (Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany) for FACS sorting of samples, and Prof. Dr. Cornelius Faber, Nina Nagelmann and Florian Breuer (Department of Clinical Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany) for MRI scanning of mice. K.K is supported by funds from the Deutsche Krebshilfe e.V. (111784), the Deutsche Kinderkrebsstiftung (DKS 2018.06) and the Innovative Forschung Münster (I-KE121502). G.M.z.H. is supported by grants from the Deutsche Forschungsgemeinschaft (DFG, ME4050/4-1, ME4050/8-1). US is supported by the Deutsche Krebshilfe e.V (111785) and the Fördergemeinschaft Kinderkrebs-Zentrum Hamburg. MH is supported by the Deutsche Forschungsgemeinschaft (DFG, HA 3060/8-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: V.M., M.G., M.I., T.K.A. and K.K. Methodology: V.M., M.G., N.M., S.N.K., D.K., S.K., G.M.z.H. Validation: V.M., M.G., M.I., F.W.F., J.G. and T.K.A; Formal Analysis: V.M., M.G., M.I., F.W.F., J.G. and T.K.A. Investigation: V.M., M.G., M.I., N.M., S.N.K., D.K. and S.K. Writing—Original Draft: V.M., M.G., M.I., A.A., T.K.A. and K.K. Supervision: W.H., M.D., U.S., M.C.F., M.H. and K.K. Funding Acquisition: K.K. and M.D.

Corresponding author

Correspondence to Kornelius Kerl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Viktoria Melcher, Monika Graf and Marta Interlandi: co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melcher, V., Graf, M., Interlandi, M. et al. Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathol 139, 913–936 (2020). https://doi.org/10.1007/s00401-019-02116-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02116-7

Keywords

Navigation