Skip to main content
Log in

Enhanced energy storage property of all-organic dielectrics by gradient layered design of sea-island structures

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymer dielectrics possessing the superiorities of easy processing and high power density are widely used in pulsed power and power electronics. However, the low energy storage density (Ue) of polymer dielectrics limits their application in the modern electronic industries. In this work, we present the sea-island structure multilayered composites based on polymethylmethacrylate (PMMA) matrix and polyvinylidene fluoride (PVDF) nanoparticles, which is constructed by the solution blending with typical solubility differences method and the layer-by-layer solution casting method. The PVDF/PMMA composite incorporated with high PVDF content is placed in the middle of the sandwich-structured composite as a non-traditional intermediate polarization layer. The PVDF/PMMA composite with low PVDF loading is placed in the outer layer to improve the insulating property of the composite. The results show that the PVDF/PMMA composites with inner and outer PVDF volume content of 30% and 10%, respectively, obtained an excellent dielectric constant value (εr ~ 4.35), which is 45% higher than that of PMMA (εr ~ 3). Meanwhile, the maximum Ue (~ 4.95 J cm−3) of the PVDF/PMMA composites at an electric field of 422.48 MV m−1 was obtained, which is 207% higher than that of PMMA (Ue ~ 1.61 J cm−3). The improved energy storage capability could be attributed to the introduction of highly polarizing particles, the increased number of heterogeneous interfaces, and the multilayered construction of composite. This work provides a strategy for the preparation of advanced all-organic dielectrics with a higher discharge energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Luo H, Wang F, Guo R et al (2022) Progress on polymer dielectrics for electrostatic capacitors application. Adv Sci 9:2202438

    Article  CAS  Google Scholar 

  2. Ren X, Meng N, Ventura L et al (2022) Ultra-high energy density integrated polymer dielectric capacitors. J Mater Chem A 10:10171

    Article  CAS  Google Scholar 

  3. Chen H, Liu L, Yan Z, Yuan X, Luo H, Zhang D (2023) Ultrahigh energy storage density in superparaelectric-like Hf0.2Zr0.8O2 electrostatic supercapacitors. Adv Sci 10:2300792

    Article  CAS  Google Scholar 

  4. Fan B, Zhou M, Zhang C, He D, Bai J (2019) Polymer-based materials for achieving high energy density film capacitors. Prog Polym Sci 97:101143

    Article  CAS  Google Scholar 

  5. Islam MD, Liu S, Choi D, Guo Z, Ryu JE (2022) Physics-based computational method predicting the dielectric properties of polymer nanocomposites. Appl Compos Mater 29:1579

    Article  CAS  Google Scholar 

  6. Tan DQ (2020) Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Func Mater 30:1808567

    Article  CAS  Google Scholar 

  7. Samant SP, Grabowski CA, Kisslinger K et al (2016) Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors. ACS Appl Mater Interfaces 8:7966

    Article  CAS  PubMed  Google Scholar 

  8. Hu J, Zhang S, Tang B (2021) 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Mater 34:260

    Article  Google Scholar 

  9. Zhang Y, Li L, Li X et al (2023) High-energy-density all-organic dielectric film via a continuous preparation processing. Adv Func Mater 33:2300555

    Article  CAS  Google Scholar 

  10. Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q (2018) High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 48:219

    Article  CAS  Google Scholar 

  11. Behera R, Elanseralathan K (2022) A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications. J Energy Storage 48:103788

    Article  Google Scholar 

  12. Wu X, Chen X, Zhang QM, Tan DQ (2022) Advanced dielectric polymers for energy storage. Energy Storage Mater 44:29

    Article  Google Scholar 

  13. Zhou Y, Yuan C, Wang S et al (2020) Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater 28:255

    Article  Google Scholar 

  14. Wen R, Guo J, Zhao C, Liu Y (2018) Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania. Adv Mater Interfaces 5:1701088

    Article  Google Scholar 

  15. Huang X, Sun B, Zhu Y, Li S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187

    Article  CAS  Google Scholar 

  16. Dou L, Lin Y-H, Nan C-W (2021) An overview of linear dielectric polymers and their nanocomposites for energy storage. Molecules 26:6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Jiang C, Li H et al (2024) Melt-reprocessable linear low-density polyethylene/cyclic olefin copolymer blends with low dielectric constant and low thermal expansion. J Appl Polym Sci 2:e55142

    Article  Google Scholar 

  18. Yang Z, Yue D, Yao Y et al (2022) Energy storage application of all-organic polymer dielectrics: a review. Polymers 14:1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen J, Wang Y, Yuan Q et al (2018) Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 54:288

    Article  CAS  Google Scholar 

  20. Hao X, Fu Q, Hou Y et al (2022) Enhancement of energy storage performances in PMMA/PVDF nanocomposites with low dielectric bismuth carbonate nanosheets. ACS Appl Energy Mater 5:15939

    Article  CAS  Google Scholar 

  21. Zhang C, Wang H, Liu Z et al (2023) Enhanced breakdown strength and energy storage density of PMMA/PVDF blends by coating superficial layers and doping organic fillers. J Mater Sci Mater Electron 34:1657

    Article  CAS  Google Scholar 

  22. Feng M, Chi Q, Feng Y et al (2020) High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos B Eng 198:108206

    Article  CAS  Google Scholar 

  23. Yadav NP, Sahu BB, Mahaling RN, Yadav T, Tripathi PK, Moharana S (2023) Superior dielectric and electrical characteristics of poly(methylmethacrylate) (PMMA)-BiFeO3-Polystyrene-2% divinyl benzene (PDB) composites. Optik 277:170695

    Article  CAS  Google Scholar 

  24. Zhang C, Wang H, Zhang T, Zhang Y, Zhang Y, Tang C (2023) Significantly enhanced energy storage density and efficiency of sandwich polymer-based composite via doped MgO and TiO2 nanofillers. J Mater Sci 58:12724

    Article  CAS  Google Scholar 

  25. Sun S, Shi Z, Sun L et al (2021) Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS Appl Mater Interfaces 13:27522

    Article  CAS  PubMed  Google Scholar 

  26. Lu Z, Yuan L, Liang G, Gu A (2023) A strategy and mechanism of enhancing energy density for poly(vinylidene fluoride-hexafluoropropylene) composites with multi-layered structure. J Mater Sci Mater Electron 34:1821

    Article  CAS  Google Scholar 

  27. Mandal S, Hou Y, Wang M, Anthopoulos TD, Choy KL (2023) Surface modification of hetero-phase nanoparticles for low-cost solution-processable high-k dielectric polymer nanocomposites. ACS Appl Mater Interfaces 15:7371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Ai J, Chen J, Lin J, Chen Q (2020) TiO2-PDVB Janus particles enhanced compatibility of titanium dioxide and recycled waste styrofoam. J Appl Polym Sci 137:48691

    Article  CAS  Google Scholar 

  29. Rafeie O, Razavi Aghjeh MK, Tavakoli A, Salami-Kalajahi M, Jameie-Oskooie A, Ghayoumi M (2019) Study on crystalline structure of poly(vinylidene fluoride)/polyethylene/graphene blend-nanocomposites. Polym Compos 40:4402

    Article  CAS  Google Scholar 

  30. Huang Z-J, Jiang J, Xue G, Zhou D-S (2019) β-phase crystallization of poly(vinylidene fluoride) in poly(vinylidene fluoride)/poly(ethyl methacrylate) blends. Chin J Polym Sci 37:94

    Article  CAS  Google Scholar 

  31. Miao B, Liu J, Zhang X, Lu J, Tan S, Zhang Z (2016) Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate). RSC Adv 6:84426

    Article  CAS  Google Scholar 

  32. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382

    Article  CAS  Google Scholar 

  33. Chi Q, Zhou Y, Yin C et al (2019) A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. Journal of Materials Chemistry C 7:14148

    Article  CAS  Google Scholar 

  34. Elashmawi IS, Hakeem NA (2008) Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci 48:895

    Article  CAS  Google Scholar 

  35. Li Z, Gong Y, Xu A et al (2023) Relaxation-induced significant room-temperature dielectric pulsing effects. Adv Func Mater 33:2301009

    Article  CAS  Google Scholar 

  36. Zidan TA (2020) Synthesis and characterization of modified properties of poly(methyl methacrylate)/organoclay nanocomposites. Polym Compos 41:564

    Article  CAS  Google Scholar 

  37. Liu F, Li Q, Cui J et al (2017) High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv Func Mater 27:1606292

    Article  Google Scholar 

  38. Zhang Y, Zhang C, Feng Y et al (2019) Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56:138

    Article  CAS  Google Scholar 

  39. Q-k Feng D-L, Zhang J-W, Yin L-j, Dang Z-m (2020) Thermal, electrical, and mechanical properties of addition-type liquid silicone rubber co-filled with Al2O3 particles and BN sheets. J Appl Polym Sci 137:49399

    Article  Google Scholar 

  40. Wu Y, Zhang X, Negi A et al (2020) Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites. Polymers 12:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng M, Feng Y, Zhang T et al (2021) Recent advances in multilayer-structure dielectrics for energy storage application. Advanced Science 8:2102221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Li Y, Wang L et al (2020) Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater 24:626

    Article  Google Scholar 

  43. Wang G, Lu Z, Li Y et al (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 121:6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toldy A, Szebényi G, Molnár K et al (2019) The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites. Polymers 11:303

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hu Y, Li Q, Shi J, Chen Y (2012) Surface/interface effect and size/configuration dependence on the energy release in nanoporous membrane. J Appl Phys 112:034302

    Article  Google Scholar 

  46. Wu C, Nie J, Li S, Wang D, Guo X (2023) Interface interactions of epsilon-CL-20 and polymers: from simulation to experiment. J Cryst Growth 617:127287

    Article  CAS  Google Scholar 

  47. Feng J, Venna SR, Hopkinson DP (2016) Interactions at the interface of polymer matrix-filler particle composites. Polymer 103:189

    Article  CAS  Google Scholar 

  48. Ye H, Liu W, Chen Y et al (2020) Enhanced polarization in a graphene/poly(vinylidene fluoride-co-chlorotrifluoroethylene) nanocomposite with a hyperbranched polyethylene-grafted poly(methyl methacrylate) interface. Ind Eng Chem Res 59:9969

    Article  CAS  Google Scholar 

  49. Li H, Wang L, Zhu Y, Jiang P, Huang X (2021) Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites. Chin Chem Lett 32:2229

    Article  CAS  Google Scholar 

  50. Xie J, Zhao X, Sun S, Song S (2021) Effect of shell phase composition on the dielectric property and energy density of core-shell structured BaTiO3 particles modified poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 138:50486

    Article  CAS  Google Scholar 

  51. Wang Z, Liu H, Peng Y, Xie J, Gu C, Hu W (2022) Enhanced energy storage performance in paraelectric–ferroelectric bipolymer-based PMMA-P(VDF-HFP) composite films via polydopamine-coated KNb3O8 fillers. ACS Appl Energy Mater 5:7701

    Article  CAS  Google Scholar 

  52. Chen J, Wang Z, Zhang X, Chen W, Liu Y-J, Wang Y (2023) Enhanced energy density at low operating field strength of laminated multicomponent polymer-based composites via regulation of electrical displacement. J Phys D Appl Phys 56:134003

    Article  Google Scholar 

Download references

Funding

We are grateful to the National Natural Science Foundation of China (Grant Nos. 51807163, 51873174, and 51927804) and Natural Science Foundation of Shaanxi Province (No.2022JM-286) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y. L. carried out laboratory research and wrote a draft of the manuscript. H. Z. devised the original concept, supervised the work, reviewed and edited the manuscript, and was responsible for project management. L. Y. reviewed and edited the manuscript. J. B. carried out the project administration.

Corresponding authors

Correspondence to Hang Zhao or Jinbo Bai.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2238 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, H., Yin, L. et al. Enhanced energy storage property of all-organic dielectrics by gradient layered design of sea-island structures. Colloid Polym Sci 302, 829–841 (2024). https://doi.org/10.1007/s00396-024-05240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-024-05240-3

Keywords

Navigation