Skip to main content
Log in

Cardioprotection by remote ischemic conditioning is transferable by plasma and mediated by extracellular vesicles

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Remote ischemic conditioning (RIC) by brief periods of limb ischemia and reperfusion protects against ischemia–reperfusion injury. We studied the cardioprotective role of extracellular vesicles (EV)s released into the circulation after RIC and EV accumulation in injured myocardium.

Methods

We used plasma from healthy human volunteers before and after RIC (pre-PLA and post-PLA) to evaluate the transferability of RIC. Pre- and post-RIC plasma samples were separated into an EV enriched fraction (pre-EV + and post-EV +) and an EV poor fraction (pre-EV- and post-EV-) by size exclusion chromatography. Small non-coding RNAs from pre-EV + and post-EV + were purified and profiled by NanoString Technology. Infarct size was compared in Sprague–Dawley rat hearts perfused with isolated plasma and fractions in a Langendorff model. In addition, fluorescently labeled EVs were used to assess homing in an in vivo rat model. (ClinicalTrials.gov, number: NCT03380663)

Results

Post-PLA reduced infarct size by 15% points compared with Pre-PLA (55 ± 4% (n = 7) vs 70 ± 6% (n = 8), p = 0.03). Post-EV + reduced infarct size by 16% points compared with pre-EV + (53 ± 15% (n = 13) vs 68 ± 12% (n = 14), p = 0.03). Post-EV- did not affect infarct size compared to pre-EV- (64 ± 3% (n = 15) and 68 ± 10% (n = 16), p > 0.99). Three miRNAs (miR-16-5p, miR-144-3p and miR-451a) that target the mTOR pathway were significantly up-regulated in the post-EV + group. Labelled EVs accumulated more intensely in the infarct area than in sham hearts.

Conclusion

Cardioprotection by RIC can be mediated by circulating EVs that accumulate in injured myocardium. The underlying mechanism involves modulation of EV miRNA that may promote cell survival during reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Abel F, Murke F, Gaida M, Garnier N, Ochsenfarth C, Theiss C, Thielmann M, Kleinbongard P, Giebel B, Peters J, Frey UH (2020) Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure. PLoS ONE 15:e0228948. https://doi.org/10.1371/journal.pone.0228948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. An M, Wu J, Zhu J, Lubman DM (2018) Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res 17:3599–3605. https://doi.org/10.1021/acs.jproteome.8b00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrienko T, Pasdois P, Rossbach A, Halestrap AP (2016) Real-time fluorescence measurements of ROS and [Ca2+] in ischemic/reperfused rat hearts: detectable increases occur only after mitochondrial pore opening and are attenuated by ischemic preconditioning. PLoS ONE 11:e0167300. https://doi.org/10.1371/journal.pone.0167300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ, Valle J, Echavez AK, Marban E (2018) Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology 16:61. https://doi.org/10.1186/s12951-018-0388-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berger MM, Macholz F, Mairbäurl H, Bartsch P (2015) Remote ischemic preconditioning for prevention of high altitude diseases: fact or fiction? J Appl Physiol. https://doi.org/10.1152/japplphysiol.00156.2015

    Article  PubMed  Google Scholar 

  6. Birkler RI, Stottrup NB, Hermannson S, Nielsen TT, Gregersen N, Botker HE, Andreasen MF, Johannsen M (2010) A UPLC-MS/MS application for profiling of intermediary energy metabolites in microdialysis samples–a method for high-throughput. J Pharm Biomed Anal 53:983–990. https://doi.org/10.1016/j.jpba.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Blighe K (2019) EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling.

  8. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Botker HE, Lassen TR, Jespersen NR (2018) Clinical translation of myocardial conditioning. Am J Physiol Heart Circ Physiol 314:H1225–H1252. https://doi.org/10.1152/ajpheart.00027.2018

    Article  CAS  PubMed  Google Scholar 

  10. Breivik L, Helgeland E, Aarnes EK, Mrdalj J, Jonassen AK (2011) Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res Cardiol 106:135–145. https://doi.org/10.1007/s00395-010-0133-0

    Article  CAS  PubMed  Google Scholar 

  11. Brennan K, Martin K, FitzGerald SP, O’Sullivan J, Wu Y, Blanco A, Richardson C, Mc Gee MM (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 10:1039. https://doi.org/10.1038/s41598-020-57497-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calvert J, Rohailla S, Clarizia N, Sourour M, Sourour W, Gelber N, Wei C, Li J, Redington AN (2014) Acute, Delayed and Chronic Remote Ischemic Conditioning Is Associated with Downregulation of mTOR and Enhanced Autophagy Signaling. PLoS ONE. https://doi.org/10.1371/journal.pone.0111291

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen M, Zhang MS, Zhang XP, Li J, Wang Y, Fan YY, Shi RZ (2015) Limb Ischemic Preconditioning Protects Endothelium from Oxidative Stress by Enhancing Nrf2 Translocation and Upregulating Expression of Antioxidases. PLoS ONE 10:12. https://doi.org/10.1371/journal.pone.0128455

    Article  CAS  Google Scholar 

  14. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davidson SM, Andreadou I, Barile L, Birnbaum Y, Cabrera-Fuentes HA, Cohen MV, Downey JM, Girao H, Pagliaro P, Penna C, Pernow J, Preissner KT, Ferdinandy P (2019) Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res 115:1156–1166. https://doi.org/10.1093/cvr/cvy314

    Article  CAS  PubMed  Google Scholar 

  16. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Przyklenk K (1999) Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol 277:H2451-2457. https://doi.org/10.1152/ajpheart.1999.277.6.H2451

    Article  CAS  PubMed  Google Scholar 

  17. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44:W135-141. https://doi.org/10.1093/nar/gkw288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang H, Knezevic B, Burnham KL, Knight JC (2016) XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits. Genome Medicine 8:129. https://doi.org/10.1186/s13073-016-0384-y

    Article  PubMed  PubMed Central  Google Scholar 

  19. Frey UH, Klaassen M, Ochsenfarth C, Murke F, Thielmann M, Kottenberg E, Kleinbongard P, Klenke S, Engler A, Heusch G, Giebel B, Peters J (2019) Remote ischaemic preconditioning increases serum extracellular vesicle concentrations with altered micro-RNA signature in CABG patients. Acta Anaesthesiol Scand 63:483–492. https://doi.org/10.1111/aas.13296

    Article  CAS  PubMed  Google Scholar 

  20. Gaspar A, Lourenço AP, Pereira M, Azevedo P, Roncon-Albuquerque R Jr, Marques J, Leite-Moreira AF (2018) Randomized controlled trial of remote ischaemic conditioning in ST-elevation myocardial infarction as adjuvant to primary angioplasty (RIC-STEMI). Basic Res Cardiol 113:14. https://doi.org/10.1007/s00395-018-0672-3

    Article  PubMed  Google Scholar 

  21. Gidlöf O, Johnstone AL, Bader K, Khomtchouk BB, O’Reilly JJ, Celik S, Van Booven DJ, Wahlestedt C, Metzler B, Erlinge D (2016) Ischemic preconditioning confers epigenetic repression of mtor and induction of autophagy through G9a-dependent H3K9 dimethylation. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.004076

    Article  PubMed  PubMed Central  Google Scholar 

  22. Giricz Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzas EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78. https://doi.org/10.1016/j.yjmcc.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  23. Gross ER, Hsu AK, Urban TJ, Mochly-Rosen D, Gross GJ (2013) Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res Cardiol 108:381. https://doi.org/10.1007/s00395-013-0381-x

    Article  CAS  PubMed  Google Scholar 

  24. Gyorgy B, Paloczi K, Kovacs A, Barabas E, Beko G, Varnai K, Pallinger E, Szabo-Taylor K, Szabo TG, Kiss AA, Falus A, Buzas EI (2014) Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res 133:285–292. https://doi.org/10.1016/j.thromres.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  25. Haller PM, Jager B, Piackova E, Sztulman L, Wegberger C, Wojta J, Gyongyosi M, Kiss A, Podesser BK, Spittler A, Huber K (2020) Changes in circulating extracellular vesicles in patients with ST-elevation myocardial infarction and potential effects of remote ischemic conditioning-a randomized controlled trial. Biomedicines. https://doi.org/10.3390/biomedicines8070218

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM, Investigators ET (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417. https://doi.org/10.1056/NEJMoa1413534

    Article  CAS  PubMed  Google Scholar 

  27. Hausenloy DJ, Kharbanda RK, Moller UK, Ramlall M, Aaroe J, Butler R, Bulluck H, Clayton T, Dana A, Dodd M, Engstrom T, Evans R, Lassen JF, Christensen EF, Garcia-Ruiz JM, Gorog DA, Hjort J, Houghton RF, Ibanez B, Knight R, Lippert FK, Lonborg JT, Maeng M, Milasinovic D, More R, Nicholas JM, Jensen LO, Perkins A, Radovanovic N, Rakhit RD, Ravkilde J, Ryding AD, Schmidt MR, Riddervold IS, Sorensen HT, Stankovic G, Varma M, Webb I, Terkelsen CJ, Greenwood JP, Yellon DM, Botker HE, Investigators C-E-P (2019) Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet 394:1415–1424. https://doi.org/10.1016/S0140-6736(19)32039-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D (2015) Remote Ischemic Conditioning. J Am Coll Cardiol 65:177–195. https://doi.org/10.1016/j.jacc.2014.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heusch G (2020) Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  30. Hildebrandt HA, Kreienkamp V, Gent S, Kahlert P, Heusch G, Kleinbongard P (2016) Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic Transl Sci 1:3–13. https://doi.org/10.1016/j.jacbts.2016.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hjortbak MV, Hjort J, Povlsen JA, Jensen RV, Stottrup NB, Laursen MR, Jespersen NR, Lofgren B, Botker HE (2018) Influence of diabetes mellitus duration on the efficacy of ischemic preconditioning in a Zucker diabetic fatty rat model. PLoS ONE 13:e0192981. https://doi.org/10.1371/journal.pone.0192981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. House SL, House BE, Glascock B, Kimball T, Nusayr E, Schultz JE, Doetschman T (2010) Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated kinase. Mol Cell Pharmacol 2:143–154. https://doi.org/10.4255/mcpharmacol.10.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huo F, Zhang C, He H, Wang Y (2016) MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells via targeting of mTOR. Biotechnol Lett 38:409–416. https://doi.org/10.1007/s10529-015-2007-x

    Article  CAS  PubMed  Google Scholar 

  34. Ikonomidis I, Vlastos D, Andreadou I, Gazouli M, Efentakis P, Varoudi M, Makavos G, Kapelouzou A, Lekakis J, Parissis J, Katsanos S, Tsilivarakis D, Hausenloy DJ, Alexopoulos D, Cokkinos DV, Botker HE, Iliodromitis EK (2021) Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study. Basic Res Cardiol 116:9. https://doi.org/10.1007/s00395-021-00851-1

    Article  CAS  PubMed  Google Scholar 

  35. Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T, Tanaka F, Shibata K, Sawada G, Takahashi Y, Ishibashi M, Wakabayashi G, Mori M, Mimori K (2012) Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis 33:2391–2397. https://doi.org/10.1093/carcin/bgs288

    Article  CAS  PubMed  Google Scholar 

  36. Jeanneteau J, Hibert P, Martinez MC, Tual-Chalot S, Tamareille S, Furber A, Andriantsitohaina R, Prunier F (2012) Microparticle release in remote ischemic conditioning mechanism. Am J Physiol Heart Circ Physiol 303:H871-877. https://doi.org/10.1152/ajpheart.00102.2012

    Article  CAS  PubMed  Google Scholar 

  37. Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Botker HE (2013) Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res 97:369–378. https://doi.org/10.1093/cvr/cvs337

    Article  CAS  PubMed  Google Scholar 

  38. Jorgensen M, Baek R, Pedersen S, Sondergaard EK, Kristensen SR, Varming K (2013) Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20920

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jorgensen MM, Baek R, Varming K (2015) Potentials and capabilities of the extracellular vesicle (EV) array. J Extracell Vesicles 4:26048. https://doi.org/10.3402/jev.v4.26048

    Article  PubMed  Google Scholar 

  40. Joshi BS, de Beer MA, Giepmans BNG, Zuhorn IS (2020) Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 14:4444–4455. https://doi.org/10.1021/acsnano.9b10033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S (2011) The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res 91:330–339. https://doi.org/10.1093/cvr/cvr073

    Article  CAS  PubMed  Google Scholar 

  42. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G (2013) The impact of hemolysis on cell-free microRNA biomarkers. Front Genet 4:94. https://doi.org/10.3389/fgene.2013.00094

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kleinbongard P, Skyschally A, Heusch G (2017) Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch 469:159–181. https://doi.org/10.1007/s00424-016-1922-6

    Article  CAS  PubMed  Google Scholar 

  44. Kleinbongard P, Peters J, Jakob H, Heusch G, Thielmann M (2018) Persistent survival benefit from remote ischemic pre-conditioning in patients undergoing coronary artery bypass surgery. J Am Coll Cardiol 71:252–254. https://doi.org/10.1016/j.jacc.2017.10.083

    Article  PubMed  Google Scholar 

  45. Koike Y, Li B, Ganji N, Zhu H, Miyake H, Chen Y, Lee C, Janssen Lok M, Zozaya C, Lau E, Lee D, Chusilp S, Zhang Z, Yamoto M, Wu RY, Inoue M, Uchida K, Kusunoki M, Delgado-Olguin P, Mertens L, Daneman A, Eaton S, Sherman PM, Pierro A (2020) Remote ischemic conditioning counteracts the intestinal damage of necrotizing enterocolitis by improving intestinal microcirculation. Nat Commun 11:4950. https://doi.org/10.1038/s41467-020-18750-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lassen TR, Nielsen JM, Johnsen J, Ringgaard S, Bøtker HE, Kristiansen SB (2017) Effect of paroxetine on left ventricular remodeling in an in vivo rat model of myocardial infarction. Basic Res Cardiol 112:26. https://doi.org/10.1007/s00395-017-0614-5

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, Wei C, Hu PZ, Kharbanda RK, Redington AN (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109:15. https://doi.org/10.1007/s00395-014-0423-z

    Article  CAS  Google Scholar 

  48. Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, Redington AN (2018) Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol 113:36. https://doi.org/10.1007/s00395-018-0694-x

    Article  CAS  PubMed  Google Scholar 

  49. Liang D, He XB, Wang Z, Li C, Gao BY, Wu JF, Bai YL (2018) Remote limb ischemic postconditioning promotes motor function recovery in a rat model of ischemic stroke via the up-regulation of endogenous tissue kallikrein. CNS Neurosci Ther 24:519–527. https://doi.org/10.1111/cns.12813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marcais A, Blevins R, Graumann J, Feytout A, Dharmalingam G, Carroll T, Amado IF, Bruno L, Lee K, Walzer T, Mann M, Freitas AA, Boothby M, Fisher AG, Merkenschlager M (2014) microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. J Exp Med 211:2281–2295. https://doi.org/10.1084/jem.20132059

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K, Collaborators RIS (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407. https://doi.org/10.1056/NEJMoa1413579

    Article  CAS  PubMed  Google Scholar 

  52. Michelsen MM, Stottrup NB, Schmidt MR, Lofgren B, Jensen RV, Tropak M, St-Michel EJ, Redington AN, Botker HE (2012) Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Res Cardiol 107:260. https://doi.org/10.1007/s00395-012-0260-x

    Article  CAS  PubMed  Google Scholar 

  53. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  Google Scholar 

  54. Nazari-Shafti TZ, Exarchos V, Biefer HRC, Cesarovic N, Meyborg H, Falk V, Emmert MY (2020) MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation? Front Bioeng Biotechnol 8:149. https://doi.org/10.3389/fbioe.2020.00149

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266. https://doi.org/10.1002/wdev.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perrino C, Barabási AL, Condorelli G, Davidson SM, De Windt L, Dimmeler S, Engel FB, Hausenloy DJ, Hill JA, Van Laake LW, Lecour S, Leor J, Madonna R, Mayr M, Prunier F, Sluijter JPG, Schulz R, Thum T, Ytrehus K, Ferdinandy P (2017) Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position paper of the European Society of Cardiology Working Group on cellular biology of the heart. Cardiovasc Res 113:725–736. https://doi.org/10.1093/cvr/cvx070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Povlsen JA, Lofgren B, Dalgas C, Jespersen NR, Johnsen J, Botker HE (2014) Frequent biomarker analysis in the isolated perfused heart reveals two distinct phases of reperfusion injury. Int J Cardiol 171:9–14. https://doi.org/10.1016/j.ijcard.2013.11.035

    Article  PubMed  Google Scholar 

  58. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5:492–497. https://doi.org/10.1158/1940-6207.CAPR-11-0370

    Article  CAS  Google Scholar 

  59. Pryds K, Nielsen RR, Hoff CM, Tolbod LP, Bouchelouche K, Li J, Schmidt MR, Redington AN, Frokiaer J, Botker HE (2018) Effect of remote ischemic conditioning on myocardial perfusion in patients with suspected ischemic coronary artery disease. J Nucl Cardiol 25:887–896. https://doi.org/10.1007/s12350-016-0709-7

    Article  PubMed  Google Scholar 

  60. Przyklenk K, Reddy Undyala VV, Wider J, Sala-Mercado JA, Gottlieb RA, Mentzer JRM (2014) Acute induction of autophagy as a novel strategy for cardioprotection. Autophagy 7:432–433. https://doi.org/10.4161/auto.7.4.14395

    Article  Google Scholar 

  61. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sakamoto M, Takeshige K, Yasui H, Tokunaga K (1998) Cardioprotective effect of succinate against ischemia/reperfusion injury. Surg Today 28:522–528. https://doi.org/10.1007/s005950050177

    Article  CAS  PubMed  Google Scholar 

  63. Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571-1576. https://doi.org/10.1152/ajpheart.2000.278.5.H1571

    Article  CAS  PubMed  Google Scholar 

  64. Schulte G, Sommerschild H, Yang J, Tokuno S, Goiny M, Lövdahl C, Johansson B, Fredholm BB, Valen G (2004) Adenosine A receptors are necessary for protection of the murine heart by remote, delayed adaptation to ischaemia. Acta Physiol Scand 182:133–143. https://doi.org/10.1111/j.1365-201X.2004.01350.x

    Article  CAS  PubMed  Google Scholar 

  65. Schultz JE, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M, Pawlowski SA, Lorenz JN, Kimball TR, Doetschman T (1999) Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 104:709–719. https://doi.org/10.1172/JCI7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117:191–200. https://doi.org/10.1042/CS20080523

    Article  CAS  Google Scholar 

  67. Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G (2015) Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ Res 117:279–288. https://doi.org/10.1161/circresaha.117.306878

    Article  CAS  PubMed  Google Scholar 

  68. Skyschally A, Kleinbongard P, Lieder H, Gedik N, Stoian L, Amanakis G, Elbers E, Heusch G (2018) Humoral transfer and intramyocardial signal transduction of protection by remote ischemic perconditioning in pigs, rats, and mice. Am J Physiol Heart Circ Physiol 315:H159–H172. https://doi.org/10.1152/ajpheart.00152.2018

    Article  CAS  PubMed  Google Scholar 

  69. Sluijter JPG, Davidson SM, Boulanger CM, Buzas EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P (2018) Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 114:19–34. https://doi.org/10.1093/cvr/cvx211

    Article  CAS  PubMed  Google Scholar 

  70. Sodar BW, Kittel A, Paloczi K, Vukman KV, Osteikoetxea X, Szabo-Taylor K, Nemeth A, Sperlagh B, Baranyai T, Giricz Z, Wiener Z, Turiak L, Drahos L, Pallinger E, Vekey K, Ferdinandy P, Falus A, Buzas EI (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:24316. https://doi.org/10.1038/srep24316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, Tropak M, Redington A (2010) Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol 299:H1598-1603. https://doi.org/10.1152/ajpheart.00396.2010

    Article  CAS  PubMed  Google Scholar 

  72. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, Andrei G, Snoeck R (2018) Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 16:1. https://doi.org/10.1186/s12967-017-1374-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takov K, Yellon DM, Davidson SM (2019) Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. J Extracell Vesicles 8:1560809. https://doi.org/10.1080/20013078.2018.1560809

    Article  CAS  PubMed  Google Scholar 

  74. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan M, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tosar JP, Cayota A, Eitan E, Halushka MK, Witwer KW (2017) Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. https://doi.org/10.1080/20013078.2016.1272832

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536. https://doi.org/10.1016/j.jacc.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  77. Wang H, Horbinski C, Wu H, Liu Y, Sheng S, Liu J, Weiss H, Stromberg AJ, Wang C (2016) NanoStringDiff: a novel statistical method for differential expression analysis based on NanoString nCounter data. Nucleic Acids Res 44:e151. https://doi.org/10.1093/nar/gkw677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan GC (2012) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94:379–390. https://doi.org/10.1093/cvr/cvs096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei M, Xin P, Li S, Tao J, Li Y, Li J, Liu M, Li J, Zhu W, Redington AN (2011) Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ Res 108:1220–1225. https://doi.org/10.1161/CIRCRESAHA.110.236190

    Article  CAS  PubMed  Google Scholar 

  80. Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, Egan CL, Cron L, Watt KI, Kuchel RP, Jayasooriah N, Estevez E, Petzold T, Suter CM, Gregorevic P, Kiens B, Richter EA, James DE, Wojtaszewski JFP, Febbraio MA (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27(237–251):e234. https://doi.org/10.1016/j.cmet.2017.12.001

    Article  CAS  Google Scholar 

  81. Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez-Erviti L, Smith CIE, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJA, Andaloussi SEL (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles. https://doi.org/10.3402/jev.v3404.2631610.3402/jev.v4.26316

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xiang C, Cui SP, Ke Y (2016) MiR-144 inhibits cell proliferation of renal cell carcinoma by targeting MTOR. J Huazhong Univ Sci Technolog Med Sci 36:186–192. https://doi.org/10.1007/s11596-016-1564-0

    Article  CAS  PubMed  Google Scholar 

  83. Yanez-Mo M, Siljander PRM, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NHH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers E-M, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen ENM, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MHM, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  84. Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, Jegga AG, Fan GC (2010) Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol 49:841–850. https://doi.org/10.1016/j.yjmcc.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Casper Carlsen Elkjær for excellent technical assistance.

Funding

This study is supported by the Danish Council for Strategic Research (11‐115818), the Independent Research Fund Denmark (11‐108354), the Novo Nordisk Foundation (NNF14OC0013337 and NNF 15OC0016674), TrygFonden (109624), and the European Union Cost Action (CA16225).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TRL and HEB; Methodology: TRL, JJ, NRJ, MVH, TG, YY, JK and HEB; Investigation: TRL, JJ, NRJ, MVH, KTS, TG, YY, JS, JRN, JH, MMJ, RB; Writing—Original Draft: TRL and HEB; Writing—review and Editing: TRL, JJ, NRJ, MVH, KTS, TG, YY, JS, JH, JRN, KRD, SBK, JK, MMJ and HEB; Funding Acquisition: HEB, JK and KRD; Resources: HEB, JRN, JK and KRD; Supervision: HEB, JK, SBK.

Corresponding author

Correspondence to Thomas Ravn Lassen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was performed in line with the principals of the Helsinki declaration. Experiments conformed to Danish law (act. no. 1306 of 23/11/2007) and institutional guidelines for animal research. Additionally, the study was approved by the Danish ethical research committee (M-2016–218-16) and registered at clinicaltrials.gov (reg: NCT03380663).

Consent to participate

All healthy volunteers signed a written consent to participate in the study after a written and oral description of the study and its purpose.

Consent for publication

Individuals signed informed consent regarding publication of their data.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassen, T.R., Just, J., Hjortbak, M.V. et al. Cardioprotection by remote ischemic conditioning is transferable by plasma and mediated by extracellular vesicles. Basic Res Cardiol 116, 16 (2021). https://doi.org/10.1007/s00395-021-00856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00856-w

Keywords

Navigation