Skip to main content
Log in

Tillage reversal of long-term no-till soil increases crop yield while mitigating yield-scaled growing season GHG fluxes in a black Chernozem cropped to barley (Hordeum vulgare L.)

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Reversing land management from no-tillage to conventional tillage (tillage reversal, TR) may markedly alter soil greenhouse gas (GHG) emissions in soils with differing fertility levels. We studied the impact of TR and nitrogen (N) fertilization on CO2 (total CO2 flux and its components), N2O and CH4 fluxes, and area- and yield-scaled GHG fluxes over two growing seasons in central Alberta, Canada. A split-plot design was used with two levels of N, 0 (N0) vs. 100 kg N ha− 1 yr− 1 (N100), and tillage, long-term no-tillage (NT) vs. TR, treatments. The TR treatment increased total CO2 fluxes (Rt), mainly attributed to the increased CO2 production from microbial activity (Rh), with the Rh/Rt ratio ranging between 52 and 61% in this study. The area-scaled GHG fluxes ranged from 3.10 to 4.50 Mg CO2-C eq. ha− 1, while the yield-scaled GHG fluxes ranged from 1.36 to 5.84 kg CO2-C eq. kg− 1 grain. The area-scaled GHG fluxes were 0.74 Mg CO2-C eq. ha− 1 higher in the TR than in the NT treatment, and 14.7% higher in the N100 than in the N0 treatment. Nitrogen fertilization did not affect the yield-scaled GHG fluxes; however, the TR treatment lowered the yield-scaled GHG fluxes due to the significantly increased crop yield. Therefore, management decisions will have to consider whether the objective is to reduce total GHG emissions on an area basis or to minimize GHG emissions per unit crop yield. Our study shows that periodic tillage of long-term NT soils increased yield and reduced yield-scaled GHG emissions, suggesting that tillage reversal is practical if the management objective is to maximize yield and minimize GHG emissions per unit crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the National Key Research and Development Program of China (2021YFD1500801), and the National Natural Science Foundation of China (Grant No. 32071840) for supporting equipment and funding this research. We thank S.J. Ren, K.H. Jung and many others for helping with soil and gas sample collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott X. Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to: Biology and Fertility of Soils.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Feng, Y.S., Dyck, M.F. et al. Tillage reversal of long-term no-till soil increases crop yield while mitigating yield-scaled growing season GHG fluxes in a black Chernozem cropped to barley (Hordeum vulgare L.). Biol Fertil Soils (2023). https://doi.org/10.1007/s00374-023-01789-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00374-023-01789-3

Keywords

Navigation