Skip to main content
Log in

Low-temperature processed planar perovskite solar cells based on bilayer electron transport layer stabilized using a surface defect passivation strategy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) and aluminum-doped zinc oxide (AZO) have been recognized as promising materials for the electron transport layer (ETL) in perovskite solar cells (PSCs) due to their favorable optoelectronic properties and low-temperature deposition processes. However, high surface trap density at the ETL/perovskite interface limits the further improvement of the power conversion efficiency (PCE) of planar PSCs. Herein, we have demonstrated a simple surface treatment of low-temperature deposited SnO2/AZO–ETL through mono-ethanolamine (MEA) to passivate the defects at the AZO/perovskite interface and reduce carrier recombination. Meanwhile, after MEA modification, the defect states at the AZO/perovskite interface were reduced, and the carrier transport capability was improved. PSC based on MEA modification showed an enhanced PCE of 15.73%, compared to 12.66% without MEA treatment, and a fill factor (FF) of 68.30% on a 0.25 cm2 active area. Furthermore, the MEA-passivated device exhibits excellent stability and retains ~ 77% of its initial PCE after 1000 h under ambient storage without encapsulation. Thus, interface engineering based on the mono-ethanolamine passivation provides a feasible and novel strategy to improve the quality of ETL to fabricate high-efficiency planar PSCs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of the current research would be available on request from the corresponding author.

References

  1. A.W. Faridi, M. Imran, G.H. Tariq, S. Ullah, S.F. Noor, S. Ansar, F. Sher, Synthesis and characterization of high-efficiency halide perovskite nanomaterials for light-absorbing applications. Ind. Eng. Chem. Res. (2022). https://doi.org/10.1021/acs.iecr.2c00416

    Article  PubMed  PubMed Central  Google Scholar 

  2. Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S.N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P.N. Rudd, J.J. Berry, M.C. Beard, J. Huang, Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019). https://doi.org/10.1038/s41467-019-12513-x

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. T. Zhang, Y. Chen, Y. Chu, S.-J. Ding, W. Liu, X. Wu, Flexible perovskite and organic semiconductor heterojunction devices for tunable band-selective photodetection. ACS Appl. Electron. Mater. 4, 2805–2814 (2022). https://doi.org/10.1021/acsaelm.2c00322

    Article  CAS  Google Scholar 

  4. J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh, H.J. Mun, M.G. Kim, T.J. Shin, S.I. Seok, Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y

    Article  ADS  PubMed  CAS  Google Scholar 

  5. S. Seo, S. Shin, E. Kim, S. Jeong, N.-G. Park, H. Shin, Amorphous TiO2 coatings stabilize perovskite solar cells. ACS Energy Lett. 6, 3332–3341 (2021). https://doi.org/10.1021/acsenergylett.1c01446

    Article  CAS  Google Scholar 

  6. J.A. Smith, O.S. Game, J.E. Bishop, E.L.K. Spooner, R.C. Kilbride, C. Greenland, R. Jayaprakash, T.I. Alanazi, E.J. Cassella, A. Tejada, G. Chistiakova, M. Wong-Stringer, T.J. Routledge, A.J. Parnell, D.B. Hammond, D.G. Lidzey, Rapid scalable processing of tin oxide transport layers for perovskite solar cells. ACS Appl. Energy Mater. 3, 5552–5562 (2020). https://doi.org/10.1021/acsaem.0c00525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. G. Liu, Y. Zhong, H. Mao, J. Yang, R. Dai, X. Hu, Z. Xing, W. Sheng, L. Tan, Y. Chen, Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chem. Eng. J. 431, 134235 (2022). https://doi.org/10.1016/j.cej.2021.134235

    Article  CAS  Google Scholar 

  8. S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34, 2110438 (2022). https://doi.org/10.1002/adma.202110438

    Article  CAS  Google Scholar 

  9. P. Xu, H. He, J. Ding, P. Wang, H. Piao, J. Bao, W. Zhang, X. Wu, L. Xu, P. Lin, X. Yu, C. Cui, Simultaneous passivation of the SnO2/perovskite interface and perovskite absorber layer in perovskite solar cells using KF surface treatment. ACS Appl. Energy Mater. 4, 10921–10930 (2021). https://doi.org/10.1021/acsaem.1c01893

    Article  CAS  Google Scholar 

  10. E. Jiang, Y. Ai, J. Yan, N. Li, L. Lin, Z. Wang, C. Shou, B. Yan, Y. Zeng, J. Sheng, J. Ye, Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 11, 36727–36734 (2019). https://doi.org/10.1021/acsami.9b11817

    Article  PubMed  CAS  Google Scholar 

  11. Q. Dong, C.H.Y. Ho, H. Yu, A. Salehi, F. So, Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31, 6833–6840 (2019). https://doi.org/10.1021/acs.chemmater.9b01292

    Article  CAS  Google Scholar 

  12. M. Venu Rajendran, S. Ganesan, V. Sudhakaran Menon, R.K. Raman, A. Alagumalai, A. Krishnamoorthy, Cesium iodide incorporation in tin oxide electron transport layer for defect passivation and efficiency enhancement in double cation absorber-based planar perovskite solar cells. Energy Technol. 9, 2100492 (2021). https://doi.org/10.1002/ente.202100492

    Article  CAS  Google Scholar 

  13. S.-H. Wu, M.-Y. Lin, S.-H. Chang, W.-C. Tu, C.-W. Chu, Y.-C. Chang, Interfacial modification of sol-gel ZnO/AZO bilayer as highly efficient electron transport layer for perovskite solar cells. In: 2017 IEEE 44th Photovolt. Spec. Conf. PVSC, IEEE, Washington, DC, pp. 1051–1054 (2017). https://doi.org/10.1109/PVSC.2017.8366533

  14. A.T. Gidey, E. Assayehegn, J.Y. Kim, Hydrophilic surface-driven crystalline grain growth of perovskites on metal oxides. ACS Appl. Energy Mater. 4, 6923–6932 (2021). https://doi.org/10.1021/acsaem.1c01020

    Article  CAS  Google Scholar 

  15. S.K. Yadavalli, Z. Dai, M. Hu, Q. Dong, W. Li, Y. Zhou, R. Zia, N.P. Padture, Mechanisms of exceptional grain growth and stability in formamidinium lead triiodide thin films for perovskite solar cells. Acta Mater. 193, 10–18 (2020). https://doi.org/10.1016/j.actamat.2020.03.036

    Article  ADS  CAS  Google Scholar 

  16. K. Mahmood, B.S. Swain, H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 6, 9127–9138 (2014). https://doi.org/10.1039/C4NR02065K

    Article  ADS  PubMed  CAS  Google Scholar 

  17. B. Gao, J. Meng, RbCs(MAFA)PbI3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation. Appl. Surf. Sci. 530, 147240 (2020). https://doi.org/10.1016/j.apsusc.2020.147240

    Article  CAS  Google Scholar 

  18. T. Das, N. Rana, P. Garg, A. Bera, A. Guchhait, Low-temperature and ambient processed all inorganic CsPbBr 3 perovskite solar cells: stability enhancement with AZO as an electron transport layer. J. Phys. Chem. C 127, 21504–21513 (2023). https://doi.org/10.1021/acs.jpcc.3c06560

    Article  CAS  Google Scholar 

  19. J. Zhao, Y. Zhang, Q. Zhang, X. Zhao, B. Li, J. Zhang, Z. Zhu, J. Liu, Q. Liu, Efficient bifacial passivation enables printable mesoscopic perovskite solar cells with improved photovoltage and fill factor. Sol. RRL. 4, 2000288 (2020). https://doi.org/10.1002/solr.202000288

    Article  CAS  Google Scholar 

  20. G. Yang, H. Lei, H. Tao, X. Zheng, J. Ma, Q. Liu, W. Ke, Z. Chen, L. Xiong, P. Qin, Z. Chen, M. Qin, X. Lu, Y. Yan, G. Fang, Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13, 1601769 (2017). https://doi.org/10.1002/smll.201601769

    Article  CAS  Google Scholar 

  21. Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, W.-Q. Wu, D.-B. Kuang, M. Wang, Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 30, 1910710 (2020). https://doi.org/10.1002/adfm.201910710

    Article  CAS  Google Scholar 

  22. J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, W. Lau, Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl. Mater. Interfaces 7, 24008–24015 (2015). https://doi.org/10.1021/acsami.5b06780

    Article  PubMed  CAS  Google Scholar 

  23. S. You, H. Wang, S. Bi, J. Zhou, L. Qin, X. Qiu, Z. Zhao, Y. Xu, Y. Zhang, X. Shi, H. Zhou, Z. Tang, A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 30, 1706924 (2018). https://doi.org/10.1002/adma.201706924

    Article  CAS  Google Scholar 

  24. H. Bi, B. Liu, D. He, L. Bai, W. Wang, Z. Zang, J. Chen, Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem. Eng. J. 418, 129375 (2021). https://doi.org/10.1016/j.cej.2021.129375

    Article  CAS  Google Scholar 

  25. E. Zimmermann, K.K. Wong, M. Müller, H. Hu, P. Ehrenreich, M. Kohlstädt, U. Würfel, S. Mastroianni, G. Mathiazhagan, A. Hinsch, T.P. Gujar, M. Thelakkat, T. Pfadler, L. Schmidt-Mende, Characterization of perovskite solar cells: towards a reliable measurement protocol. APL Mater. 4, 091901 (2016). https://doi.org/10.1063/1.4960759

    Article  ADS  CAS  Google Scholar 

  26. V. Sarritzu, N. Sestu, D. Marongiu, X. Chang, S. Masi, A. Rizzo, S. Colella, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 7, 44629 (2017). https://doi.org/10.1038/srep44629

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. N.K. Rana, T. Das, P. Garg, A. Bera, A. Guchhait, PTAA/Ag-based large area perovskite solar cells toward low-cost and ambient stability. J. Phys. Chem. C 127, 21954–21962 (2023). https://doi.org/10.1021/acs.jpcc.3c04037

    Article  CAS  Google Scholar 

  28. M. Saliba, L. Etgar, Current density mismatch in perovskite solar cells. ACS Energy Lett. 5, 2886–2888 (2020). https://doi.org/10.1021/acsenergylett.0c01642

    Article  CAS  Google Scholar 

  29. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). https://doi.org/10.1126/science.aah5557

    Article  ADS  PubMed  CAS  Google Scholar 

  30. J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, T. Minemoto, Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020). https://doi.org/10.1016/j.solmat.2020.110502

    Article  CAS  Google Scholar 

  31. S. Zeiske, C. Kaiser, P. Meredith, A. Armin, Sensitivity of sub-bandgap external quantum efficiency measurements of solar cells under electrical and light bias. ACS Photonics 7, 256–264 (2020). https://doi.org/10.1021/acsphotonics.9b01531

    Article  CAS  Google Scholar 

  32. Y. Gong, R. Qiu, C. Niu, J. Fu, E. Jedlicka, R. Giridharagopal, Q. Zhu, Y. Zhou, W. Yan, S. Yu, J. Jiang, S. Wu, D.S. Ginger, W. Huang, H. Xin, Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley-Queisser LIMIT. Adv. Funct. Mater. 31, 2101927 (2021). https://doi.org/10.1002/adfm.202101927

    Article  CAS  Google Scholar 

  33. B. Subedi, C. Li, C. Chen, D. Liu, M.M. Junda, Z. Song, Y. Yan, N.J. Podraza, Urbach energy and open-circuit voltage deficit for mixed anion-cation perovskite solar cells. ACS Appl. Mater. Interfaces 14, 7796–7804 (2022). https://doi.org/10.1021/acsami.1c19122

    Article  PubMed  CAS  Google Scholar 

  34. J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, A.K.Y. Jen, Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 177 (2020). https://doi.org/10.1038/s41467-019-13909-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  35. J. Shi, Y. Li, Y. Li, D. Li, Y. Luo, H. Wu, Q. Meng, From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule. 2, 879–901 (2018). https://doi.org/10.1016/j.joule.2018.04.010

    Article  CAS  Google Scholar 

  36. Q. Hu, W. Chen, W. Yang, Y. Li, Y. Zhou, B.W. Larson, J.C. Johnson, Y.-H. Lu, W. Zhong, J. Xu, L. Klivansky, C. Wang, M. Salmeron, A.B. Djurišić, F. Liu, Z. He, R. Zhu, T.P. Russell, Improving efficiency and stability of perovskite solar cells enabled by a near-infrared-absorbing moisture barrier. Joule. 4, 1575–1593 (2020). https://doi.org/10.1016/j.joule.2020.06.007

    Article  CAS  Google Scholar 

  37. C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov, P. Todorović, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, E.H. Sargent, Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018). https://doi.org/10.1038/s41467-018-05531-8

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  39. K. Poorkazem, T.L. Kelly, Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering. Sustain. Energy Fuels 2, 1332–1341 (2018). https://doi.org/10.1039/C8SE00127H

    Article  CAS  Google Scholar 

  40. M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, D.C. Olson, M.T. Lloyd, P. Morvillo, E.A. Katz, A. Elschner, O. Haillant, T.R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. (Jimmy) Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D.M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A.J.J.M. van Breemen, C. Girotto, E. Voroshazi, F.C. Krebs, Consensus stability testing protocols for organic photovoltaic materials and devices. In: Spec. Issue 3rd Int. Summit OPV Stab. 95, 1253–1267 (2011). https://doi.org/10.1016/j.solmat.2011.01.036.

Download references

Acknowledgements

Naba K. Rana and Nikhil Chander would like to acknowledge financial support through the project DST/ETC/CASE/RES/2023/04 (C) awarded by the Department of Science and Technology (Technology Mission Division), Government of India under the Solar Challenge Award Scheme in collaboration with Prof. Vamsi K. Komarala (Department of Energy Science and Engineering, IIT Delhi). The authors would like to thank Dr. Sanjib Banerjee, Mr. Bhanendra Sahu, Dr. Satyajit Gupta, and Mr. Deepak Aloysius of the Department of Chemistry, IIT Bhilai, for providing access to FTIR, PL, and TRPL instruments facilities.

Author information

Authors and Affiliations

Authors

Contributions

NKR: writing—original draft, visualization, experimentation, validation, resources, investigation, formal analysis, and data curation. MRS: review and editing. DPS: review, editing, supervision, investigation. NC: review, editing, supervision, project administration, methodology, funding acquisition, conceptualization, formal analysis, and investigation.

Corresponding author

Correspondence to Naba Kumar Rana.

Ethics declarations

Conflict of interest

The authors declare that no competing financial interests or personal relationships could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 563 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, N.K., Samantaray, M.R., Singh, D.P. et al. Low-temperature processed planar perovskite solar cells based on bilayer electron transport layer stabilized using a surface defect passivation strategy. Appl. Phys. A 130, 82 (2024). https://doi.org/10.1007/s00339-023-07243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07243-3

Keywords

Navigation