Skip to main content

Advertisement

Log in

Tailoring the physical properties of non-molar potassium-substituted magnesium ferrite nanomaterials and its applications in hydroelectric cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoscale ferrite magnetic materials have been applicable as electronic materials due to their tuned structural, magnetic and optical behaviors. In the present research, non-stoichiometric potassium-substituted magnesium ferrite nanomaterials, Mg0.5+xK1−2xFe2O4 (0 ≤ x ≤ 0.35), have been prepared by a cost-effective citrate precursor method annealed at a low temperature of 450°C. The average crystallite size was calculated using a W–H plot and ranged from 22 to 33 nm. HRTEM analysis determined the morphology, d-spacing, and particle size (ranging from 26 to 37 nm). EDAX analysis revealed the absence of impurity phases in the prepared nanomaterials. FTIR study showed that ferrite nanomaterial belonged to the Fd-3 m space group, and the bond length decreased with K+ ion concentration. The band gap was evaluated by the Tauc plot, which reduced from 2.39 eV to 2.12 eV with decreasing K+ content. Zeta measurements revealed the stability of the prepared material in the colloidal phase. The saturation magnetization increased from 4.53 to 22.15 emu/g with the decreasing molar concentration of K. The ferroelectric measurement demonstrated the decreasing leakage currents, which indicates the possible use of ferrites in various electronic fields. The hydroelectric cell performance of the prepared materials showed a decrease in voltage–current slope with increased potassium substitution, which is indicative of the increase in material resistance. The room temperature photoluminescence analysis represented all emission peaks in the visible range. Thus, the non-molar and low-temperature synthesis of K-substituted ferrites may be advantageous for various areas of science and technology due to their tuned optical, structural, magnetic, ferroelectric, and voltage–current properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010). https://doi.org/10.1021/ar9001069

    Article  Google Scholar 

  2. L.E. Brus, J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218

    Article  ADS  Google Scholar 

  3. G. Ali, S.A. Siddiqi, S.M. Ramay, S. Atiq, M. Saleem, Int. J. Miner. Metall. Mater. 20, 166 (2013). https://doi.org/10.1007/s12613-013-0709-4

    Article  Google Scholar 

  4. M. Fechner, I.V. Maznichenko, S. Ostanin, A. Ernst, J. Henk, P. Bruno, I. Mertig, Phys. Rev. B 78, 212406 (2008). https://doi.org/10.1103/PhysRevB.78.212406

    Article  ADS  Google Scholar 

  5. A. Eftekhari, J. Power Sources 126, 221 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007

    Article  ADS  Google Scholar 

  6. N. Kumar, R.K. Singh, H.K. Satyapal, J Mater Sci: Mater Electron 31, 9231 (2020). https://doi.org/10.1007/s10854-020-03454-z

    Article  Google Scholar 

  7. N. Kumar, R.K. Singh, S. Pd, Singh. Mater. Today: Proc. 46, 3482 (2021). https://doi.org/10.1016/j.matpr.2020.11.880

    Article  Google Scholar 

  8. V.K. Sharma, Adv. Environ. Res. 6, 143 (2002). https://doi.org/10.1016/S1093-0191(01)00119-8

    Article  Google Scholar 

  9. P. Tartaj, M.P. Morales, S.V. Verdaguer, T.G. Creno, C.J. Serna, J. Phys. 36, 182 (2003). https://doi.org/10.1088/0022-3727/36/13/202

    Article  Google Scholar 

  10. R.K. Kotnala, J. Shah, Int. J. Energy Res. 40, 1652 (2016). https://doi.org/10.1002/er.3545

    Article  Google Scholar 

  11. A. Yazdanpanah, F. Moztarzadeh, S. Arabyazdi, Physica B Condens. Matter 593, 412298 (2020). https://doi.org/10.1016/j.physb.2020.412298

    Article  Google Scholar 

  12. Q. Ni, L. Sun, E. Cao, W. Hao, Y. Ji, Z.L. Ju, Curr. Appl. Phys. 20, 1019 (2020). https://doi.org/10.1039/D0EE00092B

    Article  ADS  Google Scholar 

  13. N. Kumar, R.K. Singh, S. Kumar, P. Kumar, Physica B Condens. Matter 608, 412797 (2021). https://doi.org/10.1016/j.physb.2020.412797

    Article  Google Scholar 

  14. S. Rasheed, H.S. Aziz, R. Khan, A.M. Khan, Ceram. Int. 42, 3666 (2015). https://doi.org/10.1016/j.ceramint.2015.11.034

    Article  Google Scholar 

  15. S.B. Das, R.K. Singh, V. Kumar, N. Kumar, P. Singh, N.K. Naik, Mater Sci Semicond Process. 145, 106632 (2022). https://doi.org/10.1016/j.mssp.2022.106632

    Article  Google Scholar 

  16. P. Hajasharif, K. Ramesh, S. Sivakumar, P. Sivagurunathan, Int. J. Innov. Technol. Explor. Eng. 9, 33 (2019). https://doi.org/10.35940/ijitee.A4557.129219

    Article  Google Scholar 

  17. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714 (2015). https://doi.org/10.1039/C5RA14351A

    Article  ADS  Google Scholar 

  18. B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M.A. Tamerd, A. Benyoussef, M. Hamedoun, E.K. Hlil, M.A. Ali, A. El Kenz, O. Mounkachi, J. Magn. Magn. Mater. 500, 166416 (2020). https://doi.org/10.1016/j.jmmm.2020.166416

    Article  Google Scholar 

  19. M. Stoia, C. Pacurariu, E.C. Muntean, J Therm Anal. Calorim. 127, 155 (2017). https://doi.org/10.1007/s10973-016-5393-y

    Article  Google Scholar 

  20. P. Xu, X. Han, M. Wang, J. Phys. Chem. C 111, 5866 (2007). https://doi.org/10.1021/jp068955c

    Article  Google Scholar 

  21. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, N36 (2006). https://doi.org/10.1088/0964-1726/15/2/N02

    Article  Google Scholar 

  22. E.R. Kumar, R. Jayaprakash, M.S. Seehra, T. Prakash, S. Kumar, J. Phys. Chem. Solids 74, 943 (2013). https://doi.org/10.1016/j.jpcs.2013.02.013

    Article  ADS  Google Scholar 

  23. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, J. Saudi Chem. Soc 21, 899 (2017). https://doi.org/10.1016/j.jscs.2015.12.006

    Article  Google Scholar 

  24. M. Fid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Alia, I. Ahmad, M. Ishfaq, J. Ovon. Res. 11, 1 (2015)

    Google Scholar 

  25. M.P. Ghosh, S. Sharma, H.K. Satyapal, K. Tanbir, R.K. Singh, S. Mukherje, Mater. Chem. Phys. 241, 122383 (2020). https://doi.org/10.1016/j.matchemphys.2019.122383

    Article  Google Scholar 

  26. U. Shankar, R.K. Singh, S.B. Das et al., J. Supercond. Nov. Magn. 35, 1937 (2022). https://doi.org/10.1007/s10854-022-08978-0

    Article  Google Scholar 

  27. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  28. H. El Foulani, A. Aamouche, F. Mohseni, J.S. Amaral, D.M. Tobaldi, R.C. Pullar, J. Alloys Compd. 774, 1250 (2019). https://doi.org/10.1016/j.jallcom.2018.09.393

    Article  Google Scholar 

  29. N. Kumar, R.K. Singh, P.R. Singh, J. Mater. Sci. Mater. Electron. 32, 9886 (2021). https://doi.org/10.1007/s10854-021-05647-6

    Article  Google Scholar 

  30. S. Saini, J. Shah, R.K. Kotnala, K.L. Yadav, J Alloy Compd. 827, 154334 (2020). https://doi.org/10.1016/j.jallcom.2020.154334

    Article  Google Scholar 

  31. T.M. Hammad, J.K. Salem, A. Aamsha, N.K. Hejazy, J. Alloys Compd. 741, 123 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123

    Article  Google Scholar 

  32. A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, Y.D. Meng, J. Phys. D Appl. Phys. 39, 4762 (2006). https://doi.org/10.1088/0022-3727/39/22/004

    Article  ADS  Google Scholar 

  33. E.E. Ateia, S.K. Abdel-Aal, A.A. Allah, J. Mater. Sci. Mater. Electron 29, 1489 (2018). https://doi.org/10.1007/s10854-017-8057-1

    Article  Google Scholar 

  34. M.S.A. Darwish, I. Stibor, J. Dispers. Sci. Technol. 37, 1793 (2016). https://doi.org/10.1080/01932691.2016.1140584

    Article  Google Scholar 

  35. M.K. Satheesh Kumar, E.K. Ranjith, C.H. Srinivas, N. Suriyannarayanan, M. Deepty, C.L. Prajapat et al., J. Magn. Magn. Mater. 7, 691 (2019). https://doi.org/10.1016/j.jmmm.2018.09.039

    Article  ADS  Google Scholar 

  36. R.S. Yadav, I. Kuˇritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina et al., Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045002 (2017). https://doi.org/10.1088/2043-6254/aa853a

    Article  ADS  Google Scholar 

  37. S. Manouchehril, S. Taghi, M. Benehil, M.H. Yousefil, J. Nano Res. 43, 38 (2016). https://doi.org/10.4028/www.scientific.net/JNanoR.43.38

    Article  Google Scholar 

  38. S.Y. Wu, H. Zheng, Y.W. Lian, Y.Y. Wu, Mater. Res. Bull. 48, 2901 (2013). https://doi.org/10.1016/j.materresbull.2013.04.041

    Article  Google Scholar 

  39. A. Manash, R.K. Singh, V. Kumar et al., J. Mater. Sci. Mater. Electron. 33, 22103 (2022). https://doi.org/10.1007/s10854-022-08978-0

    Article  Google Scholar 

Download references

Acknowledgements

Principal investigator Dr. Rakesh Kr Singh is thankful to the World Bank project 2038-Technical Education Quality Improvement Program (TEQIP-3) of Aryabhatta Knowledge University, Patna for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Rangappa, D., Kumar, N. et al. Tailoring the physical properties of non-molar potassium-substituted magnesium ferrite nanomaterials and its applications in hydroelectric cell. Appl. Phys. A 129, 15 (2023). https://doi.org/10.1007/s00339-022-06291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06291-5

Keywords

Navigation