Skip to main content
Log in

Selective room-temperature ammonia sensing using CeO2-multiwalled carbon nanotube composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A chemiresistive sensor has been developed for the room-temperature detection of ammonia vapors using CeO2/multiwalled carbon nanotubes composite synthesized via. two-step method. Structural analysis has revealed the successful formation of the composite. The ammonia sensing measurements using composite-based sensor have shown an increase in device resistance when exposed to ammonia vapors. This indicates p-type conduction in the composite. A linear relation between sensing response and ammonia concentration was obtained. On the one hand, sensor made from CeO2 also gave a sensing response at room temperature and corresponding recovery time was quiet large (190 s). On the other hand, sensor made from CeO2/MWCNTs has shown a response time of 35 s and relatively smaller recovery time (100 s). Further, composite-based sensor has shown higher sensitivity to ammonia when compared with dimethyl formamide, N-methyl pyrrolidone, methanol, isopropyl alcohol, ethanol and chloroform. Importantly, the device has shown a stable and reproducible characteristics over a wide range of humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Sutton, U. Dragosits, Y.S. Tang, D. Fowler, Ammonia emissions from nonagricultural sources in the UK. Atmos. Environ. 34, 855–869 (2000)

    Article  ADS  Google Scholar 

  2. Y. Lee, S. Park, Estimation of ammonia emission in South Korea. Water Air Soil Pollut. 135, 23–37 (2004)

    Article  ADS  Google Scholar 

  3. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 160, 580–591 (2011)

    Article  Google Scholar 

  4. S. Singh, S. Sharma, R.C. Singh, S. Sharma, Hydrothermally synthesized MoS2-multiwalled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surf. Sci. 532, 147373 (2020)

    Article  Google Scholar 

  5. X. Wang, J. Zhang, Z. Zhu, Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci. 252, 2404–2411 (2006)

    Article  ADS  Google Scholar 

  6. J. Zhang, S. Wang, M. Xu, Y. Wang, H. Xia, S. Zhang, X. Guo, S. Wu, Polypyrrole-Coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C 113, 1662–1665 (2009)

    Article  Google Scholar 

  7. Z. Pang, J. Fu, L. Luo, F. Huang, Q. Wei, Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning-electrospraying for ammonia sensor. Coll. Surf. A 461, 113–118 (2014)

    Article  Google Scholar 

  8. Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, Q. Wei, Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 52, 686–695 (2017)

    Article  ADS  Google Scholar 

  9. P. Karthick Kannan, R. Saraswathi, An impedimetric ammonia sensor based on nanostructured α-Fe2O3. J. Mater. Chem. A 2, 394–401 (2014)

    Article  Google Scholar 

  10. Y. Liu, Y. Ding, L. Zhang, P.-X. Gao, Y. Lei, CeO2 nanofibers for in situ O2 and CO sensing in harsh environments. RSC Adv. 2, 5193–5198 (2012)

    Article  ADS  Google Scholar 

  11. C.J. Chang, C.Y. Lin, J.K. Chen, M.H. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors. Ceram. Int. 40, 10867–10875 (2014)

    Article  Google Scholar 

  12. J.-W. Han, B. Kim, J. Li, M. Meyyappan, A carbon nanotube based ammonia sensor on cotton textile. Appl. Phys. Lett. 102, 193104 (2013)

    Article  ADS  Google Scholar 

  13. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25, 025502 (2013)

    Article  ADS  Google Scholar 

  14. S. Singh, R.M. Sattigeri, S. Kumar, P.K. Jha, S. Sharma, Superior room-temperature ammonia sensing using a hydrothermally synthesized MoS2/SnO2 composite. ACS Omega 6, 11602–11613 (2021)

    Article  Google Scholar 

  15. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/MoO3 Nanocomposite for selective NH3 detection in a humid environment. ACS Sustain. Chem. Eng. 9, 7328–7340 (2021)

    Article  Google Scholar 

  16. S. Singh, S. Sharma, Temperature dependent selective detection of ethanol and methanol using MoS2/TiO2 composite. Sens. Actuators B Chem. 350, 130798 (2022)

    Article  Google Scholar 

  17. S. Singh, S. Raj, S. Sharma, Ethanol sensing using MoS2/TiO2 composite prepared via hydrothermal method. Mater Today Proc 46, 6083–6086 (2021)

    Article  Google Scholar 

  18. S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/WO3 nanosheets for detection of ammonia. ACS Appl. Nano Mater. 4, 2594–2605 (2021)

    Article  Google Scholar 

  19. R. Ji, Z. Zhu, W. Ma, X. Tang, Y. Liu, P. Huo, A heterojunction photocatalyst constructed by the modification of 2D-CeO2 on 2D-MoS2 nanosheets with enhanced degrading activity. Catal. Sci. Technol. 10, 788–800 (2020)

    Article  Google Scholar 

  20. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  21. G.D. Park, J.H. Kim, S.-K. Park, Y.C. Kang, MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances. ACS Appl. Mater. Interfaces 9, 10673–10683 (2017)

    Article  Google Scholar 

  22. S.T. Hung, C.J. Chang, C.C. Chen et al., SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors. J. Vac. Sci. Technol. B 30, 041214 (2012)

    Article  Google Scholar 

  23. S.T. Hung, C.J. Chang, C.H. Hsu et al., SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications. Int. J. Hydrogen Energy 37, 13783–13788 (2012)

    Article  Google Scholar 

  24. Y. Wang, X. Jiang, Y. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125, 16176–16177 (2003)

    Article  Google Scholar 

  25. H. Wang, S. Nie, H. Li, R. Ali, J. Fu, H. Xiong, J. Li, Z. Wu, W.-M. Lau, N. Mahmood, R. Jia, Y. Liu, X. Jian, 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 4, 2343–2350 (2019)

    Article  Google Scholar 

  26. F.-W. Zeng, X.-X. Liu, D. Diamond, K.T. Lau, Humidity sensors based on polyaniline nanofibres. Sens. Actuators, B Chem. 143, 530–534 (2010)

    Article  Google Scholar 

  27. A. Goldoni, V. Alijani, L. Sangaletti, L.D. Arsie, Advanced promising routes of carbon/metal oxides hybrids in sensors: a review. Electrochim. Acta 266, 139–150 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported financially by Department of Science and Technology (DST) New Delhi, India under the Grant No. EMR/2016-007483.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material synthesis, data collection and analysis were performed by ND. The first draft of the manuscript was written by SS, and all authors provided their feedback on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sandeep Sharma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogra, N., Singh, M., Kumar, A. et al. Selective room-temperature ammonia sensing using CeO2-multiwalled carbon nanotube composite. Appl. Phys. A 129, 24 (2023). https://doi.org/10.1007/s00339-022-06283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06283-5

Keywords

Navigation