Skip to main content
Log in

Effects of pulse duration on laser-induced crystallization of urea from 300 to 1200 fs: impact of cavitation bubbles on crystal nucleation

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dependence of pulse duration on crystal nucleation of urea induced by laser ablation of liquid was studied. The focused irradiation with laser pulses with all the duration conditions in this study (from 300 to 1200 fs) could induce the crystallization from the laser focus, which allowed for the systematic evaluation of probability of the laser-induced crystallization. We also carried out the microsecond-scale fast imaging of laser ablation of urea solutions to investigate the spatiotemporal dynamics of generation, expansion, collapse of cavitation bubbles induced by laser ablation, which can be one of the main triggers for crystal nucleation. As the result, we found that the laser-induced crystallization of urea is governed by the interplay of supersaturation increase by cavitation bubbles and supersaturation decrease by temperature rise. The findings provide the fundamental insight into the underlying mechanism of the laser-induced crystal nucleation and will also be useful for exploring optimized laser irradiation conditions for more efficient crystallization of organic materials in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.A. Garetz, J.E. Aber, N.L. Goddard, R.G. Young, A.S. Myerson, Phys. Rev. Lett. 77, 3475 (1996). https://doi.org/10.1103/PhysRevLett.77.3475

    Article  ADS  Google Scholar 

  2. C. Duffus, P.J. Camp, A.J. Alexander, J. Am. Chem. Soc. 131, 11676 (2009). https://doi.org/10.1021/ja905232m

    Article  Google Scholar 

  3. T. Sugiyama, T. Adachi, H. Masuhara, Chem. Lett. 36, 1480 (2007). https://doi.org/10.1246/cl.2007.1480

    Article  Google Scholar 

  4. T. Sugiyama, K.I. Yuyama, H. Masuhara, Acc. Chem. Res. 45, 1946 (2012). https://doi.org/10.1021/ar300161g

    Article  Google Scholar 

  5. T. Okutsu, K. Nakamura, H. Haneda, H. Hiratsuka, Cryst. Growth Des. 4, 113 (2004). https://doi.org/10.1021/cg0340493

    Article  Google Scholar 

  6. T. Okutsu, K. Isomura, N. Kakinuma, H. Horiuchi, M. Unno, H. Matsumoto, H. Hiratsuka, Cryst. Growth Des. 5, 461 (2005). https://doi.org/10.1021/cg049816s

    Article  Google Scholar 

  7. H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, T. Sasaki, Jpn. J. Appl. Phys. 42, L798 (2003). https://doi.org/10.1143/JJAP.42.L798

    Article  ADS  Google Scholar 

  8. H.Y. Yoshikawa, R. Murai, H. Adachi, S. Sugiyama, M. Maruyama, Y. Takahashi, K. Takano, H. Matsumura, T. Inoue, S. Murakami, H. Masuhara, Y. Mori, Chem. Soc. Rev. 43, 2147 (2014). https://doi.org/10.1039/C3CS60226E

    Article  Google Scholar 

  9. Y. Tominaga, M. Maruyama, M. Yoshimura, H. Koizumi, M. Tachibana, S. Sugiyama, H. Adachi, K. Tsukamoto, H. Matsumura, K. Takano, S. Murakami, T. Inoue, H.Y. Yoshikawa, Y. Mori, Nat. Photonics 10, 723 (2016). https://doi.org/10.1038/nphoton.2016.202

    Article  ADS  Google Scholar 

  10. D. Suzuki, S. Nakabayashi, H.Y. Yoshikawa, Cryst. Growth Des. 18, 4829 (2018). https://doi.org/10.1021/acs.cgd.8b00697

    Article  Google Scholar 

  11. H. Takahashi, M. Yamaji, J. Ikeyama, M. Nakajima, H. Kitahara, S. Tetsukawa, N. Kobayashi, M. Maruyama, T. Sugiyama, S. Okada, Y. Mori, S. Nakabayashi, M. Yoshimura, H.Y. Yoshikawa, J. Phys. Chem. C 125, 8391 (2021). https://doi.org/10.1021/acs.jpcc.0c10636

    Article  Google Scholar 

  12. H.Y. Yoshikawa, Y. Hosokawa, H. Masuhara, Cryst. Growth Des. 6, 302 (2006). https://doi.org/10.1021/cg050190v

    Article  Google Scholar 

  13. T. Sugiyama, T. Adachi, H. Masuhara, Chem. Lett. 38, 482 (2009). https://doi.org/10.1246/cl.2009.482

    Article  Google Scholar 

  14. B.A. Garetz, J. Matic, A.S. Myerson, Phys. Rev. Lett. 89, 175501 (2002). https://doi.org/10.1103/PhysRevLett.89.175501

    Article  ADS  Google Scholar 

  15. J. Matic, X. Sun, B.A. Garetz, A.S. Myerson, Cryst. Growth Des. 5, 1565 (2005). https://doi.org/10.1021/cg050041c

    Article  Google Scholar 

  16. H.Y. Yoshikawa, Y. Hosokawa, H. Masuhara, Jpn. J. Appl. Phys. 45, L23 (2006). https://doi.org/10.1143/JJAP.45.L23

    Article  ADS  Google Scholar 

  17. H. Takahashi, T. Sugiyama, S. Nakabayashi, and H. Y. Yoshikawa, Appl. Phys. Express 14, 045503 (2021) https://doi.org/10.35848/1882-0786/abf053.

  18. K. Ikeda, M. Maruyama, Y. Takahashi, Y. Mori, H.Y. Yoshikawa, S. Okada, H. Adachi, S. Sugiyama, K. Takano, S. Murakami, H. Matsumura, T. Inoue, M. Yoshimura, Y. Mori, Appl. Phys. Express 8, 045501 (2015). https://doi.org/10.7567/APEX.8.045501

    Article  ADS  Google Scholar 

  19. Y. Tsuri, M. Maruyama, R. Fujimoto, S. Okada, H. Adachi, H.Y. Yoshikawa, K. Takano, S. Murakami, H. Matsumura, T. Inoue, K. Tsukamoto, M. Imanishi, M. Yoshimura, Y. Mori, Appl. Phys. Express 12, 015507 (2019). https://doi.org/10.7567/1882-0786/aaf419

    Article  ADS  Google Scholar 

  20. Y. Hosokawa, Jpn. J. Appl. Phys. 58, 110102 (2019). https://doi.org/10.7567/1347-4065/ab4749

    Article  ADS  Google Scholar 

  21. N. Hidman, G. Sardina, D. Maggiolo, H. Ström, S. Sasic, Cryst. Growth Des. 20, 7276 (2020). https://doi.org/10.1021/acs.cgd.0c00942

    Article  Google Scholar 

  22. J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 7488 (1998). https://doi.org/10.1063/1.367512

    Article  ADS  Google Scholar 

  23. H.Y. Yoshikawa, R. Murai, S. Maki, T. Kitatani, S. Sugiyama, G. Sazaki, H. Adachi, T. Inoue, H. Matsumura, K. Takano, S. Murakami, T. Sasaki, Y. Mori, Appl. Phys. A 93, 911 (2008). https://doi.org/10.1007/s00339-008-4790-x

    Article  ADS  Google Scholar 

  24. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005). https://doi.org/10.1007/s00340-005-2036-6

    Article  ADS  Google Scholar 

  25. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys. B Lasers Opt. 68, 271 (1999). https://doi.org/10.1007/s003400050617

    Article  ADS  Google Scholar 

  26. I. V Markov, Crystal Growth for Beginners (WORLD SCIENTIFIC, 2003) https://doi.org/10.1142/5172.

  27. R. Murai, H.Y. Yoshikawa, Y. Takahashi, M. Maruyama, S. Sugiyama, G. Sazaki, H. Adachi, K. Takano, H. Matsumura, S. Murakami, T. Inoue, Y. Mori, Appl. Phys. Lett. 96, 043702 (2010). https://doi.org/10.1063/1.3294622

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for JSPS Fellows (Nos. 20J10452 and 22J00529 for Y. T) and JSPS KAKENHI Grants (Nos. 19H02613, 20K21117, 22H00302, and 22H05423 for H. Y. Y and 19K229659 for M.M.). This work was also supported by grants from AMADA Foundation, the Uehara Memorial Foundation, Global Center for Medical Engineering and Informatics of Osaka University (MEI Grant 2021), Iketani Science and Technology Foundation (No. 0331016-A), and 2022 1st Kao Crescent Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihoko Maruyama or Hiroshi Y. Yoshikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 26128 KB)

Supplementary file2 (MP4 783 KB)

Supplementary file3 (MP4 1166 KB)

Supplementary file4 (MP4 989 KB)

Supplementary file5 (PDF 409 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuri, Y., Maruyama, M., Tsukamoto, K. et al. Effects of pulse duration on laser-induced crystallization of urea from 300 to 1200 fs: impact of cavitation bubbles on crystal nucleation. Appl. Phys. A 128, 803 (2022). https://doi.org/10.1007/s00339-022-05909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05909-y

Keywords

Navigation