Skip to main content

Advertisement

Log in

Control of ablation morphology on Cu film with tailored femtosecond pulse trains

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ablation morphology of Cu film is investigated using tailored femtosecond pulse trains. The width, depth, and structure of ablation craters are systematically analyzed as the function of sub-pulse interval. Two distinct ablation sub-structures are observed. The gentle slope irradiated by low fluence emerges from the peripheral region of the ablation crater, and the steep slope formed in the central region is irradiated by high fluence. The ablation morphology can be controlled by manipulating the shaped pulse trains. We demonstrate that the ablation depth modulation is significant with the ablation width almost unchanged. By fitting the depth curves, we define a coefficient K to characterize the plasma shielding effect between sub-pulses with the increase in sub-pulse interval. For three fluences, the coefficient K using two kinds of pulse trains are extracted experimentally. The results reveal that the plasma shielding effect can be modulated by changing sub-pulse interval, and the corresponding physical interpretation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)

    Article  ADS  Google Scholar 

  2. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  3. A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501 (2004)

    Article  Google Scholar 

  4. P. Danny, J.L. Laurent, Phys. Rev. B 67, 184102 (2003)

    Article  Google Scholar 

  5. J.P. Colombier, P. Combis, F. Bonneau, R.L. Harzic, E. Audouard, Phys. Rev. B 71, 165406 (2005)

    Article  ADS  Google Scholar 

  6. N.N. Nediakov, P.A. Atanasov, S. Amoruso, R. Bruzzese, X. Wang, Appl. Surf. Sci. 253, 7761 (2007)

    Article  ADS  Google Scholar 

  7. J. Erbin, T. Bauer, C. Fallnich, A. Kasenbacher, W.H. Arnold, Appl. Surf. Sci. 197–198, 737 (2002)

    Article  Google Scholar 

  8. Q. Luo, H.L. Xu, S.A. Hosseini, J.F. Daigle, F. Théberge, M. Sharifi, S.L. Chin, Appl. Phys. B 82, 105 (2006)

    Article  ADS  Google Scholar 

  9. B.R. Tull, J.E. Carey, M.A. Sheehy, C. Friend, E. Mazur, Appl. Phys. A 83, 341–346 (2006)

    Article  ADS  Google Scholar 

  10. K.M. Tanvir Ahmmed, C. Grambow, A.M. Kietzig, Micromachines 5, 1219 (2014)

    Article  Google Scholar 

  11. C.B. Chaffer, A. Brodeur, J.F. Garcia, E. Mazur, Opt. Lett. 26, 93 (2001)

    Article  ADS  Google Scholar 

  12. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y.Y. Jiang, Opt. Lett. 26, 1912 (2001)

    Article  ADS  Google Scholar 

  13. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)

    Article  ADS  Google Scholar 

  14. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  15. K.K. Anoop, S.S. Harilal, R. Philip, R. Bruzzese, S. Amoruso, J. Appl. Phys. 120, 185901 (2016)

    Article  ADS  Google Scholar 

  16. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.C. Kieffer, O. Nada, I. Brunette, J. Opt. Soc. Am. A 24, 1562 (2007)

    Article  ADS  Google Scholar 

  17. Y. Miyasaka, M. Hashida, T. Nishii, S. Inoue, S. Sakabe, Appl. Phys. Lett. 106, 013101 (2015)

    Article  ADS  Google Scholar 

  18. J. Thorstensen, S.E. Foss, J. Appl. Phys. 112, 103514 (2012)

    Article  ADS  Google Scholar 

  19. Z.H. Wu, X.N. Zhu, N.J. Zhang, Appl. Phys. 109, 053113 (2011)

    Article  Google Scholar 

  20. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. A 77, 265 (2003)

    Article  ADS  Google Scholar 

  21. G. Caterina, G. Giuseppe, V. Annalisa, Opt. Express 26, 4 (2018)

    Google Scholar 

  22. M. Guillermin, A. Klini, J.P. Colombier, F. Garrelie, D. Gray, C. Liebig, E. Audouard, C. Fotakis, R. Stoian, Opt. Soc. Am. 18, 11 (2010)

    Google Scholar 

  23. M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, E. Audouard, Appl. Surf. Sci. 255, 5163–5166 (2009)

    Article  ADS  Google Scholar 

  24. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, H. Soder, Appl. Surf. Sci. 253, 8075–8079 (2007)

    Article  ADS  Google Scholar 

  25. F. Bourquard, J.P. Colombier, M. Guillermin, A.S. Loir, C. Donnet, R. Stoian, F. Garrelie, Appl. Surf. Sci. 258, 9374 (2012)

    Article  ADS  Google Scholar 

  26. M. Guillermin, C. Liebig, F. Garrelie, F. Bourquard, R. Stoian, A.S. Loir, E. Audouard, Appl. Surf. Sci. 255, 5163 (2009)

    Article  ADS  Google Scholar 

  27. H.-R. Javier, G. Nadine, S. Jan, ACS Appl. Mater. Interfaces 7, 6613–6619 (2015)

    Article  Google Scholar 

  28. Lide D R, 87th edn. (CRC Press, Boca Raton, 2006)

  29. C.W. Cheng, S.Y. Wang, K.P. Chang, J.K. Chen, Appl. Surf. Sci. 361, 41–48 (2016)

    Article  ADS  Google Scholar 

  30. J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, P. Balling, Appl. Phys. A 101, 97–101 (2010)

    Article  ADS  Google Scholar 

  31. E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V.T. Tikhonchuk, J.-M. Chevalier, P. Combis, Phys. Plasmas 15, 063507 (2008)

    Article  ADS  Google Scholar 

  32. S. Yao-Dong, C. Zhou, S. Chang-Ka, Hu Zhan, Chin. Phys. B 22(1), 013302 (2013)

    Article  ADS  Google Scholar 

  33. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359–S366 (1999)

    Article  ADS  Google Scholar 

  34. A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501–505 (2004)

    Article  Google Scholar 

  35. F. Garrelie, F. Bourquard, A.-S. Loir, C. Donnet, J.-P. Colombier, Opt. Laser Technol. 78, 42–51 (2016)

    Article  ADS  Google Scholar 

  36. Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, Z. Hu, Opt. Laser Technol. 80, 116–124 (2016)

    Article  ADS  Google Scholar 

  37. X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russoa, J. Appl. Phys. 74, 4915 (1993)

    Article  ADS  Google Scholar 

  38. G. Cristoforetti, G. Lorenzetti, P.A. Benedetti, E. Tognoni, S. Legnaioli, V. Palleschi, Appl. Phys. 42, 225207 (2009)

    Google Scholar 

  39. D.L. Duanming-Zhanga, S.-H. Zhihua-Lia, L.G. Boming-Yu, L.L. Xinyu-Tana, Phys. B 362, 82–87 (2005)

    Article  ADS  Google Scholar 

  40. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97–101 (2010)

    Article  ADS  Google Scholar 

  41. Y. Hirayama, M. Obara, J. Appl. Phys. 97, 6 (2005)

    Google Scholar 

  42. J. Cheng, W. Perrie, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 256, 1514–1520 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant No. 11374124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Chen or Zhan Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Qi, H., Zhao, L. et al. Control of ablation morphology on Cu film with tailored femtosecond pulse trains. Appl. Phys. A 126, 425 (2020). https://doi.org/10.1007/s00339-020-03589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03589-0

Keywords

Navigation