Skip to main content
Log in

Color modulation of electrochromic nanosheet-structured nickel–cobalt oxide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel–cobalt (Ni–Co) oxide thin films were directly grown on the fluorine-doped tin oxide (FTO)-coated glass substrates via a simple one-pot solution process using various ratios of Ni and Co precursors. All the Ni–Co oxide samples were composed of nanosheet structures that were vertically aligned on the surface of the substrates. The nanosheets of the Ni10–Co0, Ni8–Co2, Ni6–Co4, and Ni4–Co6 oxide samples uniformly covered the surface, whereas those of the Ni2–Co8 and Ni0–Co10 oxide samples were sparsely distributed. As the ratio of Co to Ni was increased, the width of the nanosheets gradually increased. Cyclic voltammetry (CV) at a scan rate of 50 mV/s showed that the Ni8–Co2 and Ni6–Co4 oxide samples exhibited better electrochemical performance than the other oxide samples. Furthermore, all Ni–Co oxide samples except Ni0–Co10 exhibited a reversibly sustainable in situ transmittance change with cycling (1000 cycles, 30,000 s) and a relatively fast switching time of less than 4 s for the colored and bleached states. Herein, the color modulation from transparent to black nanosheet-structured Ni–Co oxide samples was effectively tuned by adjusting the ratios of the Ni and Co precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Zhang, H. Li, E. Hopmann, A.Y. Elezzabi, Nanophotonics (2020). https://doi.org/10.1515/nanoph-2020-0474

    Article  Google Scholar 

  2. Y.-H. Lee, J.S. Kang, J.-H. Park, J. Kang, I.-R. Jo, Y.-E. Sung, K.-S. Ahn, Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104720

    Article  Google Scholar 

  3. M. Morales-Luna, M.A. Arvizu, C.G. Granqvist, G.A. Niklasson, Thin Solid Films (2016). https://doi.org/10.1016/j.tsf.2016.06.058

    Article  Google Scholar 

  4. B.A. Korgel, Nature (2013). https://doi.org/10.1038/500278a

    Article  Google Scholar 

  5. S. Hou, A.I. Gavrilyuk, J. Zhao, H. Geng, N. Li, C. Hua, K. Zhang, Y. Li, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.04.206

    Article  Google Scholar 

  6. Z. Chen, A. Xiao, Y. Chen, C. ZuO, S. Zhou, L. Li, J. Phys. Chem. Solids (2013). https://doi.org/10.1016/j.jpcs.2013.05.015

    Article  Google Scholar 

  7. X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang, W.K. Zhang, H. Huang, Electrochem. Commun. (2008). https://doi.org/10.1016/j.elecom.2008.09.025

    Article  Google Scholar 

  8. Y.E. Firat, A. Peksoz, Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2018.10.166

    Article  Google Scholar 

  9. K.H. Kim, Y. Ishita, Y. Abe, Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.130755

    Article  Google Scholar 

  10. B. Vidhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Azia, J. Ismail, M.M. Yusoff, R. Jose, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.04.211

    Article  Google Scholar 

  11. H. Xiao, F. Qu, X. Wu, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.10.171

    Article  Google Scholar 

  12. S. Dang, Z. Wang, W. Jia, Y. Cao, J. Zhang, Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2019.04.023

    Article  Google Scholar 

  13. Y. Tang, Y. Liu, S. Yu, W. Guo, S. Mu, H. Wang, Y. Zhao, L. Hou, Y. Fan, F. Gao, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.02.095

    Article  Google Scholar 

  14. Y. Yokoiwa, Y. Abe, M. Kawamura, K.H. Kim, T. Kiba, Jpn. J. Appl. Phys. 58, 055501 (2019)

    Article  ADS  Google Scholar 

  15. T.N. Ramesh, P. Vishnu Kamath, J. Power Sources (2006). https://doi.org/10.1016/j.jpowsour.2005.05.050

    Article  Google Scholar 

  16. L. Xie, Z. Hu, C. Lv, G. Sun, J. Wang, Y. Li, H. He, J. Wang, K. Li, Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2012.05.145

    Article  Google Scholar 

  17. K.H. Kim, S. Motoyama, M. Ohara, Y. Abe, M. Kawamura, T. Kiba, Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.03.061

    Article  Google Scholar 

  18. K.H. Kim, S. Motoyama, Y. Abe, M. Kawamura, T. Kiba, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07051-7

    Article  Google Scholar 

  19. M. Hussain, Z.H. Ibupoto, M.A. Abbasi, X. Liu, O. Nur, M. Willander, Sensor (2014). https://doi.org/10.3390/s140305415

    Article  Google Scholar 

  20. B. Abdolahi, M.B. Gholivand, M. Shamsipur, M. Amiri, Int. J. Energy Res. (2021). https://doi.org/10.1002/er.6618

    Article  Google Scholar 

  21. M.D. Rocha, B. Dunn, A. Rougier, Sol. Energy Mater. Sol. Cells (2019). https://doi.org/10.1016/j.solmat.2019.110114

    Article  Google Scholar 

  22. Q. Liu, G. Dong, Y. Xiao, M.-P. Delplancke-Ogletree, F. Reniers, X. Diao, Sol. Energy Mater. Sol. Cells (2016). https://doi.org/10.1016/j.solmat.2016.07.022

    Article  Google Scholar 

  23. H. Zhang, M. Zhang, Mater. Chem. Phys. (2008). https://doi.org/10.1016/j.matchemphys.2007.10.005

    Article  Google Scholar 

  24. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Electrochem. Acta (2008). https://doi.org/10.1016/j.electacta.2008.03.047

    Article  Google Scholar 

  25. X.H. Xia, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells (2008). https://doi.org/10.1016/j.solmat.2008.01.009

    Article  Google Scholar 

  26. D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, P.S. Patil, Appl. Surf. Sci. (2011). https://doi.org/10.1016/j.apsusc.2010.10.037

    Article  Google Scholar 

  27. A. Martinez-Luevanos, J. Oliva, C.R. Garcis, F. Avalos-Belmontes, M.A. Garcia-Lobato, Appl. Phys. A (2017). https://doi.org/10.1016/j.mset.2020.06.008

    Article  Google Scholar 

  28. N. Hu, Z. Tang, P.K. Shen, RSC Adv. (2018). https://doi.org/10.1039/c8ra03599g

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 21K04149) from the Japan Society for the Promotion of Science. The authors would like to thank Mr. Susumu Tokuda of the Open Facility Center of the Kitami Institute of Technology for technical assistance with FESEM and EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 903 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Morohoshi, M. & Abe, Y. Color modulation of electrochromic nanosheet-structured nickel–cobalt oxide thin films. Appl. Phys. A 128, 507 (2022). https://doi.org/10.1007/s00339-022-05657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05657-z

Keywords

Navigation