Skip to main content
Log in

Enhanced in vitro antibacterial activity of ZnO and Mn–Mg co-doped ZnO nanoparticles: investigation of synthesis, characterization, and impact of dopant

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and cost-effective co-precipitation method was used to develop zinc oxide (ZnO) and dual metal (Mn, Mg) co-doped ZnO nanoparticles (NPs). The impact of dual doping on the structural, morphological, and optical properties of ZnO NPs was investigated using a variety of characterization approaches. The wurtzite phase of ZnO was confirmed by X-ray diffraction. The findings demonstrated that (Mn2+, Mg2+) ions could replace Zn2+ ions without affecting the wurtzite structure of the ZnO. With the increase in the (Mn, Mg) doping concentrations, the crystallites size is also increased. According to the scanning electron microscopy and energy dispersive spectroscopy results, the dual metal is effectively incorporated into the ZnO lattice, and the elements zinc (Zn), oxygen (O), manganese (Mn), and magnesium (Mg) compounds were found in the doped NPs. The band gap increased due to the doping and the prepared NPs were p-type in nature. The antibacterial activity of the samples was tested using the diffusion well method against Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumonia) bacteria. When compared to other samples, the higher amount of (Mn, Mg) doping exhibits higher antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl. Sci. 1(8), 1–28 (2019)

    Google Scholar 

  2. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015)

    Google Scholar 

  3. R. Rajendran, A. Mani, Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc. 24(12), 1010–1024 (2020)

    Google Scholar 

  4. J. Xuan, G. Zhao, M. Sun, F. Jia, X. Wang, T. Zhou, G. Yin, Bo. Liu, Low-temperature operating ZnO-based NO2 sensors: a review. RSC Adv. 10(65), 39786–39807 (2020)

    ADS  Google Scholar 

  5. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis mechanisms and applications. Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    Google Scholar 

  6. I.B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photo detector at low noise current. J. Mater. Sci.: Mater. Electron. 30(10), 9444–9454 (2019)

    Google Scholar 

  7. S. Jiang, K. Lin, M. Cai, ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Front. Chem. 8, 580 (2020)

    ADS  Google Scholar 

  8. Y. Tang, Z. Qin, S. Yin, H. Sun, Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. Nanoscale 13(13), 6373–6388 (2021)

    Google Scholar 

  9. T. Naseem, T. Durrani, The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. J. Environ. Chem. Ecotoxicol. 3, 59–75 (2021)

    Google Scholar 

  10. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014)

    Google Scholar 

  11. G.Y. Nigussie, G.M. Tesfamariam, B.M. Tegegne, Y.A. Weldemichel, T.W. Gebreab, D.G. Gebrehiwot, G.E. Gebremichel, Antibacterial activity of Ag-doped TiO2and Ag-doped ZnO nanoparticles. Int. J. Photoenergy 2018, 1–7 (2018)

    Google Scholar 

  12. K. Vijayalakshmi, D. Sivaraj, Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 5(84), 68461–68469 (2015)

    ADS  Google Scholar 

  13. A. Elbourne, S. Cheeseman, P. Wainer, J. Kim, A.E. Medvedev, K.J. Boyce, C.F. McConville et al., Significant enhancement of antimicrobial activity in oxygen-deficient zinc oxide nanowires. ACS Appl. Bio Mater. 3(5), 2997–3004 (2020)

    Google Scholar 

  14. A. Naskar, S. Lee, K.-S. Kim, Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Adv. 10(3), 1232–1242 (2020)

    ADS  Google Scholar 

  15. S.K. Sehmi, S. Noimark, S.D. Pike, J.C. Bear, W.J. Peveler, C.K. Williams, M.S.P. Shaffer, E. Allan, I.P. Parkin, A.J. MacRobert, Enhancing the antibacterial activity of light-activated surfaces containing crystal violet and ZnO nanoparticles: investigation of nanoparticle size, capping ligand, and dopants. ACS Omega 1(3), 334–343 (2016)

    Google Scholar 

  16. P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9(5), 737 (2019)

    Google Scholar 

  17. K. Kasirajan, M. Karunakaran, M. Balaji, S. Maheswari, S. Palanisamy, S. Prabakaran, S. Usha, S. Rajalakshmi, Fabrication of eco-friendly chitosan functionalized few-layered WS2 nanocomposite implanted with ruthenium nanoparticles for in vitro antibacterial and anticancer activity: Synthesis, characterization, and pharmaceutical applications. Int. J. Biol. Macromol. 190, 520–532 (2021)

    Google Scholar 

  18. A.S.H. Hameed, C. Karthikeyan, S. Sasikumar, V.S. Kumar, S. Kumaresan, G. Ravi, Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B 1(43), 5950–5962 (2013)

    Google Scholar 

  19. B.L. Guo, P. Han, L.C. Guo, Y.Q. Cao, A.D. Li, J.Z. Kong, H.F. Zhai, D. Wu, The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res. Lett. 10(1), 1–10 (2015)

    ADS  Google Scholar 

  20. L. Bruno Chandrasekar, M. Divya Gnaneswari, M. Karunakaran, Synthesis characterization and anti-bacterial activity of Mg and Ba-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 31(22), 20270–20276 (2020)

    Google Scholar 

  21. A. Dhanalakshmi, B. Natarajan, V. Ramadas, A. Palanimurugan, S. Thanikaikarasan, Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles. Pramana J. Phys. 87(4), 1–9 (2016)

    Google Scholar 

  22. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65(12), 1797–1800 (2011)

    Google Scholar 

  23. I.A. Hassan, S. Sathasivam, S.P. Nair, C.J. Carmalt, Antimicrobial properties of copper-doped ZnO coatings under darkness and white light illumination. ACS Omega 2(8), 4556–4562 (2017)

    Google Scholar 

  24. S. Aiswarya Devi, M. Harshiny, S. Udaykumar, P. Gopinath, M. Matheswaran, Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits. Toxicol. Res. (Camb) 6(6), 854–865 (2017)

    Google Scholar 

  25. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, M.B. Akbar, Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A: Chem. 401, 112776 (2020)

    Google Scholar 

  26. K. Kasirajan, A. Nancy Anna Anasthasiya, O.M. Aldossary, M. Ubaidullah, M. Karunakaran, Structural, morphological, optical and enhanced photodetection activities of CdO films: an effect of Mn doping. Sens. Actuators A: Phys. 319, 112531 (2021)

    Google Scholar 

  27. K. Radhi Devi, G. Selvan, M. Karunakaran, K. Kasirajan, L. Bruno Chandrasekar, M. Shkir, S. AlFaify, SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications. J. Mater. Sci.: Mater. Electron. 31, 10186–10195 (2020)

    Google Scholar 

  28. F.C. Romeiro, J.Z. Marinho, S.C.S. Lemos, A.P. de Moura, P.G. Freire, L.F. da Silva, E. Longo, R.A.A. Munoz, R.C. Lima, Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. J. Solid State Chem. 230, 343–349 (2015)

    ADS  Google Scholar 

  29. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    ADS  Google Scholar 

  30. D. Sharma, R. Jha, Transition metal (Co, Mn) co-doped ZnO nanoparticles: effect on structural and optical properties. J. Alloys Compd. 698, 532–538 (2017)

    Google Scholar 

  31. S.S. Abdullahi, Y. Köseoğlu, S. Güner, S. Kazan, B. Kocaman, C.E. Ndikilar, Synthesis and characterization of Mn and Co co-doped ZnO nanoparticles. Superlattices Microstruct. 83, 342–352 (2015)

    ADS  Google Scholar 

  32. A. Nibret, O.P. Yadav, I. Diaz, A.M. Taddesse, Cr-N co-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity for degradation of thymol blue. Bull. Chem. Soc. Ethiop. 29(2), 247–258 (2015)

    Google Scholar 

  33. B. Sankara Reddy, S. Venkatramana Reddy, P. Venkateswara Reddy, N. Koteeswara Reddy, R.P. Vijayalakshmi, Doping effect of Ag+, Mn2+ ions on structural and optical properties of ZnO nanoparticles. IOP Conf. Ser.: Mater. Sci. Eng. 73(1), 012053 (2015)

    Google Scholar 

  34. D.K. Dubey, D.N. Singh, S. Kumar, C. Nayak, P. Kumbhakar, S.N. Jha, D. Bhattacharya, A.K. Ghosh, S. Chatterjee, Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Adv. 6(27), 22852–22867 (2016)

    ADS  Google Scholar 

  35. V.P. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by co-precipitation method. J. Phys. Chem. C. 118(18), 9715–9725 (2014)

    Google Scholar 

  36. G. Vijayaprasath, R. Murugan, S. Asaithambi, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Structural and magnetic behavior of Ni/Mn co-doped ZnO nanoparticles prepared by co-precipitation method. Ceram. Int. 42(2), 2836–2845 (2016)

    Google Scholar 

  37. V.T. Nguyen, V.T. Vu, T.A. Nguyen, V.K. Tran, P. Nguyen-Tri, Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles. J. Compos. Sci. 3(2), 61 (2019)

    Google Scholar 

  38. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019)

    ADS  Google Scholar 

  39. J. Wojnarowicz, M. Omelchenko, J. Szczytko, T. Chudoba, S. Gierlotka, A. Majhofer, A. Twardowski, W. Lojkowski, Structural and magnetic properties of Co-Mn co doped ZnO nanoparticles obtained by microwave solvothermal synthesis. Curr. Comput.-Aided Drug Des. 8(11), 410 (2018)

    Google Scholar 

  40. K. Kasirajan, L. Bruno Chandrasekar, S. Maheswari, M. Karunakaran, P. Shunmuga Sundaram, A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. 121, 111554 (2021)

    Google Scholar 

  41. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G.M. Alzoubi, F. Al-Dweri, M.S. Bawa’aneh, Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Results Phys. 6, 1064–1071 (2016)

    ADS  Google Scholar 

  42. M. Ghosh, D. Karmakar, S. Basu, S.N. Jha, D. Bhattacharyya, S.C. Gadkari, S.K. Gupta, Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures. J. Phys. Chem. Solids. 75(4), 543–549 (2014)

    ADS  Google Scholar 

  43. K. Radhi Devi, G. Selvan, M. Karunakaran, K. Kasirajan, M. Shkir, S. Alfaify, A SILAR fabrication of nanostructured ZnO thin films and their characterizations for gas sensing applications: an effect of Ag concentration. Superlattices Microstruct. 143, 106547 (2020)

    Google Scholar 

  44. M. Karunakaran, L. Bruno Chandrasekar, K. Kasirajan, R. Chandramohan, Preparation and characterization of transparent conducting Mn and Ni-doped zinc oxide films prepared by successive ionic layer adsorption and reaction method. J. Nanoelectron. Optoelectron. 15(1), 101–107 (2020)

    Google Scholar 

  45. L. Bruno Chandrasekar, M. Karunakaran, R. Chandramohan, T. Daniel Thangadurai, R. Vijayalakshmi, X-ray peak profile analysis of Zn1–y Mn y O and Zn1–y Ni y O nanostructures. J. Nanoeng. Nanomanuf. 6(3), 217–221 (2016)

    Google Scholar 

  46. I. Chérif, Y.O. Dkhil, S. Smaoui, K. Elhadef, M. Ferhi, S. Ammar, X-ray diffraction analysis by modified Scherrer, Williamson-Hall and size-strain plot methods of ZnO nanocrystals synthesized by oxalate route: a potential antimicrobial candidate against foodborne pathogens. J. Clust. Sci. (2022). https://doi.org/10.1007/s10876-022-02248-z

    Article  Google Scholar 

  47. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    ADS  Google Scholar 

  48. A. Ali Fatima, S. Devadason, T. Mahalingam, Structural, luminescence and magnetic properties of Mn doped ZnO thin films using spin coating technique. J. Mater. Sci.: Mater. Electron. 25(8), 3466–3472 (2014)

    Google Scholar 

  49. R. Bomila, S. Srinivasan, A. Venkatesan, B. Bharath, K. Perinbam, Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mater. Res. Innov. 22(7), 379–386 (2018)

    Google Scholar 

  50. K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, R. Thamizselvi, Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. 183, 24–36 (2016)

    Google Scholar 

  51. S. Maheswari, M. Karunakaran, L. Bruno Chandrasekar, K. Kasirajan, Ammonia sensors on the base of gadolinium doped tin oxide thin films and its characterization: effect of doping concentration. Physica B Condens. Matter. 602, 412477 (2021)

    Google Scholar 

  52. S. Maheswari, M. Karunakaran, L. Bruno Chandrasekar, K. Kasirajan, N. Rajkumar, Room temperature ammonia gas sensor using Nd-doped SnO2 thin films and its characterization. J. Mater. Sci.: Mater. Electron. 31(15), 12586–12594 (2020)

    Google Scholar 

  53. D. Titus, E. James Jebaseelan Samuel, S. Mohana Roopan, in Nanoparticle characterization techniques. Green synthesis, characterization and applications of nanoparticles (Elsevier, 2019), pp. 303–319

  54. A. Modwi, K.K. Taha, L. Khezami, A.S. Al-Ayed, O.K. Al-Duaij, M. Khairy, M. Bououdina, Structural and electrical characterization of Ba/ZnO nanoparticles fabricated by co-precipitation. J. Inorg. Organomet. Polym. Mater. 30(7), 2633–2644 (2020)

    Google Scholar 

  55. R. Bomila, S. Suresh, S. Srinivasan, Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. J. Mater. Sci.: Mater. Electron. 30(1), 582–592 (2019)

    Google Scholar 

  56. E. Pragna, M. Ramanadha, A. Sudharani, K.S. Kumar, Nano synthesis and characterization of Co and Mn Co-doped ZnO by solution combustion technique. J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-021-05874-2

    Article  Google Scholar 

  57. O.M. Ntwaeaborwa, S.J. Mofokeng, VK, RE Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. 182, 42–49 (2017)

    ADS  Google Scholar 

  58. P. Norouzzadeh, K. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J. Mater. Sci.: Mater. Electron. 31(10), 7335–7347 (2020)

    Google Scholar 

  59. H.S. Alanazi, N. Ahmad, F.A. Alharthi, Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation. RSC Adv. 11(17), 10194–10202 (2021)

    ADS  Google Scholar 

  60. O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto, H. Kojima, Influence of powder characteristic of ZnO on antibacterial activity effect of specific surface area. J. Ceram. Soc. JAPAN 106(1238), 1007–1011 (1998)

    Google Scholar 

  61. K. Kasirajan, M. Karunakaran, M. Balaji, S. Selvam, Y. Cai, R. Chandramohan, Facile synthesis of highly biologically active chitosan functionalized 2D WS2 nanocomposite anchored with palladium nanoparticles for antibacterial and anticancer activity: in-vitro biomedical evaluation. J. Mol. Liq. 335, 116582 (2021)

    Google Scholar 

  62. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 26(10), 7564–7576 (2015)

    Google Scholar 

  63. U. Kadiyala, E.S. Turali-Emre, J.H. Bahng, N.A. Kotov, J.S. Van Epps, Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale 10(10), 4927–4939 (2018)

    Google Scholar 

  64. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles. Mater. Res. Bull. 76, 48–61 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KRD: first author, conceptualization, methodology, investigation; writing original draft, formal analysis; LBC: formal analysis, methodology; KK: validation, resources, writing—reviewing and editing; MK: corresponding author, validation, visualization, supervision; MDG: formal analysis, methodology; SU: formal analysis, methodology.

Corresponding author

Correspondence to M. Karunakaran.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhi Devi, K., Bruno Chandrasekar, L., Kasirajan, K. et al. Enhanced in vitro antibacterial activity of ZnO and Mn–Mg co-doped ZnO nanoparticles: investigation of synthesis, characterization, and impact of dopant. Appl. Phys. A 128, 368 (2022). https://doi.org/10.1007/s00339-022-05502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05502-3

Keywords

Navigation