Skip to main content
Log in

Ultrahigh humidity tolerance of room-temperature hydrogen sensitive Pt–WO3 porous composite ceramics with ultra-large WO3 grains

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two kinds of WO3 powders with average size of 100 nm and 5 μm have been used to prepare Pt–WO3 porous composite ceramics, whose WO3 grains are around 1 and 5 μm, respectively. The ceramics with 1 μm WO3 grains show a sensitivity of 755 to 0.08% H2 – 20% O2 – N2 in air of 30% relative humidity (RH) at room temperature, but show no response to this concentration of hydrogen in air of 50% RH due to the depression effect of water, which indicate a relatively low humidity tolerance for the ceramics. In contrast, the ceramics with 5 μm WO3 grains show sensitivities of 1200 and 80 to 0.08% H2 – 20% O2 – N2 at room temperature in air of 30% and 50% RH, respectively, and a sensitivity of 8 to 0.02% H2 – 20% O2 – N2 in air of 70% RH, which represent an ultrahigh humidity tolerance. These results clearly demonstrate that the microstructure of room-temperature hydrogen sensitive metal oxide (MOX) materials exerts a decisive influence on their humidity tolerance. Much attention should be paid to MOX materials with large and even ultra-large MOX grains when room-temperature MOX gas sensors with high humidity tolerance are being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.D. Bakrania, M.S. Wooldridge, The effects of two thick film deposition methods on tin dioxide gas sensor performance. Sensors 9, 6853–6868 (2009)

    Article  ADS  Google Scholar 

  2. G. Korotcenkov, Handbook of gas sensor materials: properties, advantages and shortcomings for applications (Springer Press, New York, 2013)

    Book  Google Scholar 

  3. L. Boon-Brett, J. Bousek, G. Black et al., Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrogen Energy 35, 373–384 (2010)

    Article  Google Scholar 

  4. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)

    Article  Google Scholar 

  5. R. Vander Wal, G. Hunter, J. Xu et al., Metal-oxide nanostructure and gas-sensing performance. Sens. Actuators B 138, 113–119 (2009)

    Article  Google Scholar 

  6. G. Jimenez-Cadena, J. Riu, F.X. Rius, Gas sensors based on nanostructured materials. Analyst 132, 1083–1099 (2007)

    Article  ADS  Google Scholar 

  7. X.R. Xu, M. Yin, N. Li et al., Vanadium-doped tin oxide porous nanofibers: enhanced responsivity for hydrogen detection. Talanta 167, 638–644 (2017)

    Article  Google Scholar 

  8. Y.K. Kim, S.-H. Hwang, S.M. Jeong et al., Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles. Talanta 188, 356–364 (2018)

    Article  Google Scholar 

  9. Y. Xiong, W.P. Chen, Y.S. Li et al., Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 9, 3528–3535 (2016)

    Article  Google Scholar 

  10. S. Zhu, P.C. Li, G.T. Wu et al., Extraordinary room-temperature hydrogen sensing capabilities with high humidity tolerance of Pt-SnO2 composite nanoceramics prepared using SnO2 agglomerate powder. Int. J. Hydrogen Energy 43, 21177–21185 (2018)

    Article  Google Scholar 

  11. C.B. Song, G.T. Wu, B.L. Sun et al., Pt-WO3 porous composite ceramics outstanding for sensing low concentrations of hydrogen in air at room temperature. Int. J. Hydrogen Energy 42, 6420–6424 (2017)

    Article  Google Scholar 

  12. W.P. Chen, Y. Xiong, Y.S. Li et al., Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt–TiO2 nanocomposite ceramics. Int. J. Hydrogen Energy 41, 3307–3312 (2016)

    Article  Google Scholar 

  13. P.C. Li, Z.H. Xiong, S. Zhu et al., Singular room-temperature hydrogen sensing characteristics with ultrafast recovery of Pt-Nb2O5 porous composite ceramics. Int. J. Hydrogen Energy 42, 30186–30192 (2017)

    Article  Google Scholar 

  14. B. Pejcic, P. Eadington, A. Ross, Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ. Sci. Technol. 41, 6333–6342 (2007)

    Article  ADS  Google Scholar 

  15. G. Korotcenkov, Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens. Actuators B 121, 664–678 (2007)

    Article  Google Scholar 

  16. K.-I. Choi, M. Huebner, A. Haensch et al., Ambivalent effect of Ni loading on gas sensing performance in SnO2 based gas sensor. Sens. Actuators B 183, 401–410 (2013)

    Article  Google Scholar 

  17. F.E. Annanouch, Z. Haddi, S. Vallejos et al., Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interf. 7, 6842–6851 (2015)

    Article  Google Scholar 

  18. G. Korotcenkov, I. Blinov, V. Brinzari et al., Effect of air humidity on gas response of SnO2 thin film ozone sensors. Sens. Actuators B 122, 519–526 (2007)

    Article  Google Scholar 

  19. K. Suematsu, N. Ma, M. Yuasa et al., Surface-modification of SnO2 nanoparticles by incorporation of Al for the detection of combustible gases in a humid atmosphere. RSC Adv. 5, 86347–86354 (2015)

    Article  ADS  Google Scholar 

  20. S. Gunji, M. Jukei, Y. Shimotsuma et al., Unexpected gas sensing properties of SiO2/SnO2 core-shell nanofibers under dry and humid conditions. J. Mater. Chem. C 5, 6369–6376 (2017)

    Article  Google Scholar 

  21. H.R. Kim, A. Haensch, I.D. Kim et al., The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011)

    Article  Google Scholar 

  22. D. Koziej, N. Baˆrsan, U. Weimar et al., Water-oxygen interplay on tin dioxide surface: implication on gas sensing. Chem. Phys. Lett. 410, 321–323 (2005)

    Article  ADS  Google Scholar 

  23. A.M. Ruiz, X. Illa, R. Díaz et al., Analyses of the ammonia response of integrated gas sensors working in pulsed mode. Sens. Actuators B 118, 318–322 (2006)

    Article  Google Scholar 

  24. S. Vallejos, S. Selina, F.E. Annanouch et al., Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 6, 28464 (2016)

    Article  ADS  Google Scholar 

  25. G. Heiland, D. Kohl, Physical and chemical aspects of oxidic semiconductor gas sensors. Chem Sensor Technol 1, 15–38 (1988)

    Article  Google Scholar 

  26. D. Patil, Y.-K. Seo, Y.K. Hwang et al., Humidity sensing properties of poly(o-anisidine)/WO3 composites. Sens. Actuators B 128, 374–382 (2008)

    Article  Google Scholar 

  27. N. Yamazoe, K. Suematsu, K. Shimanoe, Two types of moisture effects on the receptor function of neat tin oxide gas sensor to oxygen. Sens. Actuators B 176, 443–452 (2013)

    Article  Google Scholar 

  28. S. Harbeck, A. Szatvanyi, N. Barsan et al., DRIFT studies of thick film un-doped and Pd-doped SnO2 sensors: temperature changes effect and CO detection mechanism in the presence of water vapour. Thin Solid Films 436, 76–83 (2003)

    Article  ADS  Google Scholar 

  29. R.G. Pavelko, H. Daly, C. Hardacre et al., Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms. Phys. Chem. Chem. Phys. 12, 2639–2647 (2010)

    Article  Google Scholar 

  30. S. Zhu, Y. Liu, G.T. Wu et al., Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. Sens. Actuators B 285, 49–55 (2019)

    Article  Google Scholar 

  31. J.-H. Smått, M. Lindén, T. Wagner et al., Micrometer-sized nanoporous tin dioxide spheres for gas sensing. Sens. Actuators B 155, 483–488 (2011)

    Article  Google Scholar 

  32. J. Zhang, X.H. Liu, G. Neri et al., Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant No. U2067207, the Science and Technology Program of Shenzhen under Grant No. JCYJ20190808152803567, and the National Key R&D Program of China under Grant No. 2020YFB2008800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanping Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, P., Xu, L. et al. Ultrahigh humidity tolerance of room-temperature hydrogen sensitive Pt–WO3 porous composite ceramics with ultra-large WO3 grains. Appl. Phys. A 127, 952 (2021). https://doi.org/10.1007/s00339-021-05107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05107-2

Keywords

Navigation