Skip to main content
Log in

Performance enhancement of ZnO ultraviolet detector by localized surface plasmon resonance of Al nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) photodetectors have attracted much attention due to their important applications in many fields. Improving of the photoelectric performance of ultraviolet detectors is the key challenge. One solution is to fabricate UV photodetectors based on a wide bandgap semiconductor material—zinc oxide (ZnO). Here, ZnO nanorods with pure surface and high crystallization are prepared by laser ablation in liquid combined with hydrothermal method. The bandgap of ZnO products calculated from UV–vis reflection spectra is 3.43 eV, which means the ZnO nanorods synthesized in this work are suitable for UV detection. Moreover, Al nanoparticles with localized surface plasmon resonance (LSPR) are also prepared by laser ablation in liquid. The UV photodetector based on the ZnO nanorods and Al nanoparticles is fabricated. It is found that the photoelectric performance of ZnO-based UV photodetector is significantly increased after the addition of Al nanoparticles. The mechanism is that the LSPR happens when laser irradiated on the ZnO nanorods with Al nanoparticles, so the absorption is enhanced. Therefore, the ZnO nanorods get more light energy, which means more photo-induced carriers are generated and the current will increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Teng, L. Zheng, K. Hu, H. Chen, Y. Li, Z. Zhang, X. Fang, A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector[J]. J. Mater. Chem. C 4(36), 8416–8421 (2016)

    Article  Google Scholar 

  2. H.N. Chong, G.D. Wei, H.L. Hou, H.J. Yang, M.H. Shang, F.M. Gao, W.Y. Yang, G.Z. Shen, High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires[J]. Nano Res. 8(9), 2822–2832 (2015)

    Article  Google Scholar 

  3. H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz[J]. Adv. Mater. 28(3), 403–433 (2016)

    Article  ADS  Google Scholar 

  4. X. Fei, D. Jiang, M. Zhao, R. Deng, Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect[J]. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abe43b

    Article  Google Scholar 

  5. Z. Zhan, L. Xu, J. An, H. Du, Z. Weng, W. Lu, Direct catalyst-free chemical vapor deposition of ZnO nanowire array UV photodetectors with enhanced photoresponse speed[J]. Adv. Eng. Mater. (2017). https://doi.org/10.1002/adem.201700101

    Article  Google Scholar 

  6. D. Kim, J.-Y. Leem, Crystallization of ZnO thin films via thermal dissipation annealing method for high-performance UV photodetector with ultrahigh response speed[J]. Sci. Rep. 11(1), 382–382 (2021)

    Article  Google Scholar 

  7. S. Hajiashrafi, N. Motakef Kazemi, Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5[J]. Heliyon 5(9), e02152–e02152 (2019)

    Article  Google Scholar 

  8. G. Milano, L. D’Ortenzi, K. Bejtka, B. Ciubini, S. Porro, L. Boarino, C. Ricciardi, Metal-insulator transition in single crystalline ZnO nanowires[J]. Nanotechnology 32(18), 185202–185202 (2021)

    Article  ADS  Google Scholar 

  9. W. Yang, X. Xiao, B. Fang, H. Deng, Nanorods-assembled ZnO microflower as a powerful channel for n-butanol sensing[J]. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158410

    Article  Google Scholar 

  10. C.-H. Yu, C.-C. Lo, K.-H. Chen, Y.-R. Chang, C.-W. Chen, C.-Y. Wen, Self-assembly nuclei with a preferred orientation at the extended hydrophobic surface toward textured growth of ZnO nanorods in aqueous chemical bath deposition[J]. Nanotechnology 32(17), 175603–175603 (2021)

    Article  ADS  Google Scholar 

  11. R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods[J]. Mater. Lett. 214, 254–256 (2018)

    Article  Google Scholar 

  12. Z.-H. Wang, H.-C. Yu, C.-C. Yang, H.-T. Yeh, Y.-K. Su, Low-frequency noise performance of Al-doped ZnO nanorod photosensors by a low-temperature hydrothermal method[J]. IEEE Trans. Electron Devices 64(8), 3206–3212 (2017)

    Article  ADS  Google Scholar 

  13. Y.-L. Chu, L.-W. Ji, H.-Y. Lu, S.-J. Young, I.T. Tang, T.-T. Chu, J.-S. Guo, Y.-T. Tsai, Fabrication and characterization of UV photodetectors with Cu-doped ZnO nanorod arrays[J]. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab69f2

    Article  Google Scholar 

  14. J. Agrawal, T. Dixit, I.A. Palani, M.S.R. Rao, V. Singh, Fabrication of high responsivity deep UV photo-detector based on Na doped ZnO nanocolumns[J]. J. Phys. D-Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aab8d3

    Article  Google Scholar 

  15. F. Abbasi, F. Zahedi, M.H. Yousefi, Fabricating and investigating high photoresponse UV photodetector based on Ni-doped ZnO nanostructures[J]. Optics Commun. (2021). https://doi.org/10.1016/j.optcom.2020.126565

    Article  Google Scholar 

  16. F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse[J]. Opt. Laser Technol. 98, 344–353 (2018)

    Article  ADS  Google Scholar 

  17. C. Li, L. Yu, X. Yuan, Y. Li, N. Ning, L. Cui, S. Ma, W. Kang, X. Fan, Ag nanorods assembled with ZnO nanowalls for near-linear high-response UV photodetectors[J]. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154652

    Article  Google Scholar 

  18. S. Patra, A. Ray, A. Roy, P. Sadhukhan, S. Pujaru, U.K. Ghorai, R. Bhar, S. Das, ZnO polymer composite based visible blind UV photo detector[J]. Mater. Res. Bull. 101, 240–245 (2018)

    Article  Google Scholar 

  19. J.T. Abdalla, S. Jiao, D. Wang, Z. Zeng, B. Zhang, H. Guichard, J. Wang, Enhanced Ag@SnO(2)Plasmonic nanoparticles for boosting photoluminescence and photocurrent response of ZnO nanorod UV photodetectors[J]. J. Electron. Mater. 49(9), 5657–5665 (2020)

    Article  Google Scholar 

  20. M. Li, M. Zhao, D. Jiang, Q. Li, C. Shan, X. Zhou, Y. Duan, N. Wang, J. Sun, Optimizing the performance of ZnO/Au/MgZnO/SiO2 sandwich structured UV photodetectors by surface plasmons in Ag nanoparticles[J]. Appl. Phys. A-Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03486-6

    Article  Google Scholar 

  21. J.M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J.M. Saiz, F. Gonzalez, A.S. Brown, M. Losurdo, H.O. Everitt, F. Moreno, UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects[J]. J. Phys. Chem. C 117(38), 19606–19615 (2013)

    Article  Google Scholar 

  22. M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics[J]. ACS Nano 8(1), 834–840 (2014)

    Article  Google Scholar 

  23. G. Maidecchi, G. Gonella, R.P. Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, F. Bisio, Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays[J]. ACS Nano 7(7), 5834–5841 (2013)

    Article  Google Scholar 

  24. Y. Wei, Y. Gu, M. Zhao, Y. Dong, J. Chen, H. Zeng, Deep-ultraviolet plasmon resonances in Al-Al2O3@C core-shell nanoparticles prepared via laser ablation in liquid[J]. ACS Appl. Electron. Mater. 2(3), 802–807 (2020)

    Article  Google Scholar 

  25. M. Dell’Aglio, R. Gaudiusoa, O.D. Pascalea, A.D. Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production[J]. Appl. Surf. Sci. 348, 4–9 (2015)

    Article  Google Scholar 

  26. G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals[J]. Prog. Mater Sci. 52(4), 648–698 (2007)

    Article  Google Scholar 

  27. L. Kai, C. Jun, Q. Huasong, D. Yuhang, G. Yujie, L. Jiaxin, L. Xuhai, Z. Yousheng, Z. Haibo, Bubble dimer dynamics induced by dual laser beam ablation in liquid[J]. Appl. Phys. Lett. 113(2), 021902 (2018)

    Article  Google Scholar 

  28. P.L.J. Xiao, C.X. Wang, G.W. Yang, External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly[J]. Prog. Mater. Sci. 87, 140–220 (2017)

    Article  Google Scholar 

  29. M. Rui, X. Li, L. Gan, T. Zhai, H. Zeng, Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications[J]. Adv. Func. Mater. 26, 5051–5060 (2016)

    Article  Google Scholar 

  30. R.A. Smith, Semiconductors [M] (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  31. J. Torrent, V. Barron, Encyclopedia of Surface and Colloid Science [M] (Marcel Dekker, New York, 2002)

    Google Scholar 

  32. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures[J]. Rev. Mex. Fis. S. 53, 18–22 (2007)

    Google Scholar 

  33. M. Yu, C. Yang, X.-M. Li, T.-Y. Lei, H.-X. Sun, L.-P. Dai, Y. Gu, X. Ning, T. Zhou, C. Wang, H.-B. Zeng, J. Xiong, Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics[J]. Nanoscale 9(25), 8716–8722 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lai, J., Lu, J. et al. Performance enhancement of ZnO ultraviolet detector by localized surface plasmon resonance of Al nanoparticles. Appl. Phys. A 127, 679 (2021). https://doi.org/10.1007/s00339-021-04820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04820-2

Keywords

Navigation