Skip to main content
Log in

Influence of PVP polymer concentration on nonlinear absorption in silver nanoparticles at resonant excitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver nanoparticles exhibit saturable absorption at resonant excitation, which upon addition of the polymer as a capping agent, exhibit reverse saturable absorption. These nonlinear optical processes play an important role in the overall nonlinear optical properties of silver nanoparticle. Thus, with this viewpoint, the nonlinear absorption of silver nanoparticles in deionized water in the presence of varying concentration polyvinylpyrrolidone polymer was investigated using femtosecond laser pulses at 400 nm. This study shows that the saturable absorption process is significantly suppressed at high concentration of the polymer. The silver nanoparticle with smaller size shows pure reverse saturable absorption process with the respective coefficient of \(\beta =7.55\times {10}^{-12}\, \mathrm{c}\mathrm{m}/\mathrm{W}\). The change in the nonlinear optical response from combined saturable absorption and reverse saturable absorption to pure reverse saturable absorption process was observed as the concentration of polymer increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.-X. Zhang, Y.-H. Wang, Nonlinear optical properties of metal nanoparticles: a review. RSC Adv. 7, 45129 (2017)

    Google Scholar 

  2. V.V. Mody, R. Siwale, A. Singh, H.R. Mody, Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2, 282 (2010)

    Google Scholar 

  3. N.I. Zheludevn, Nonlinear optics on the nanoscale. Contemp. Phys. 43, 365 (2002)

    ADS  Google Scholar 

  4. K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. Exp. 24, 10352 (2016)

    ADS  Google Scholar 

  5. K. Xu, H. Yan, C.F. Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering. Adv. Opt. Mater. 6, 1701167 (2018)

    Google Scholar 

  6. K. Xu, R. Zhou, K. Takei, M. Hon, Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019)

    Google Scholar 

  7. Y. Gao, W. Wu, D. Kong, L. Ran, Q. Chang, H. Ye, Femtosecond nonlinear absorption of Ag nanoparticles at surface plasmon resonance. Physica 45, 162 (2012)

    Google Scholar 

  8. H.H. Mai, V.E. Kaydashev, V.K. Tikhomirov, E. Janssens, M.V. Shestakov, M. Meledina, S. Turner, G.V. Tendeloo, V.V. Moshchalkov, P. Lieven, Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host. J. Phys. Chem C 118, 15995 (2014)

    Google Scholar 

  9. P.C. Ray, Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 110, 5332 (2010)

    Google Scholar 

  10. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)

    Google Scholar 

  11. M. Hari, S. Mathew, B. Nithyaja, S.A. Joseph, V.P.N. Nampoori, P. Radhakrishnan, Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength. Opt. Quantum Electron. 43, 49 (2012)

    Google Scholar 

  12. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016)

    Google Scholar 

  13. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J. Photochem. Photobiol. A Chem. 145, 201 (2001)

    Google Scholar 

  14. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202, 80 (2002)

    ADS  Google Scholar 

  15. Z. Shervani, Y. Ikushima, M. Sato, H. Kawanami, Y. Hakuta, T. Yokoyama, T. Nagase, H. Kuneida, K. Aramaki, Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 286, 403 (2007)

    Google Scholar 

  16. D.C. Tien, C.Y. Liao, J.C. Huang, K.H. Tseng, J.K. Lung, T.T. Tsung, W.S. Kao, T.-H. Tsai, T.-W. Cheng, B.-S. Yu, H.-M. Lin, L. Stobinski, Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev. Adv. Mater. Sci. 18, 752 (2008)

    Google Scholar 

  17. J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess. Biosyst. Eng. 32, 79 (2008)

    Google Scholar 

  18. J. Natsuki, T. Natsuki, Y. Hashimoto, A Review of silver nanoparticles: synthesis methods, properties, and applications. I. J. Mat. Sci. Appl. 4, 325 (2015)

    Google Scholar 

  19. S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 Nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974 (2014)

    Google Scholar 

  20. H.R. Ghorbani, A.A. Safekordi, H. Attar, S.M. Sorkhabadi, Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q. J. 25, 317 (2011)

    Google Scholar 

  21. H. Wang, X. Qiao, J. Chena, S. Ding, Preparation of silver nanoparticles by chemical reduction method. Colloids Surf. A Physicochem. Eng. Asp. 256, 111 (2005)

    Google Scholar 

  22. Y.C. Lu, K.S. Chou, A simple and effective route for the synthesis of nano-silver colloidal dispersions. J. Chin. Inst. Chem. Eng. 39, 673 (2008)

    Google Scholar 

  23. G. Guo, W. Gan, J. Luo, F. Xiang, J. Zhang, H. Zhou, H. Liu, Preparation and dispersive mechanism of highly dispersive ultrafine silver powder. Appl. Surf. Sci. 256, 6683 (2010)

    ADS  Google Scholar 

  24. D. Wang, C. Song, Z. Hu, X. Zhou, Synthesis of silver nanoparticles with flake-like shapes. Mater. Lett. 59, 1760 (2005)

    Google Scholar 

  25. Z. Zhang, B. Zhao, L. Hu, PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 121, 105 (1996)

    ADS  Google Scholar 

  26. B. He, J.J. Tan, K.Y. Liew, H. Liu, Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A Chem. 221, 121 (2004)

    Google Scholar 

  27. H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 94, 449 (2005)

    Google Scholar 

  28. J. Natsuki, T. Natsuki, Y. Hashimoto, A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325 (2015)

    Google Scholar 

  29. H.D. Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs) a review. Sustain. Mater. Technol. 13, 18 (2017)

    Google Scholar 

  30. L. Gharibshahi, E. Saion, E. Gharibshahi, A.H. Shaari, K.A. Matori, Influence of Poly(vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method. PLoS ONE 12, e0186094 (2017)

    Google Scholar 

  31. T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035004 (2012)

    ADS  Google Scholar 

  32. M. Ghanipour, D. Dorranian, Effect of Ag- Nanoparticle doped in polyvinyl alcohol on the structural and optical properties of PVA film. J. Nanomater. 2013, 897043 (2013)

    Google Scholar 

  33. N. Misra, M. Rapolu, S.V. Rao, L. Varshney, V. Kumar, Nonlinear optical studies of inorganic nanoparticles polymernanocomposite coatings fabricated by electron beam curing. Opt. Laser Tech. 79, 24 (2016)

    ADS  Google Scholar 

  34. L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, S.-Q. Zhu, Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film. Nanoscale Res. Lett. 9, 155 (2014)

    ADS  Google Scholar 

  35. A.L. Stepanov, Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev. Adv. Mater. Sci. 27, 115 (2011)

    Google Scholar 

  36. M. Sheik-bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W.V. Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990)

    ADS  Google Scholar 

  37. G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377 (1908)

    Google Scholar 

  38. M.N. Nadagouda, N. Iyanna, J. Lalley, C. Han, D.D. Dionysiou, R.S. Varma, Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. Sustain. Chem. Eng. 2, 1717 (2014)

    Google Scholar 

  39. L. Yang, D.H. Osborne, R.F. Haglund Jr., R.H. Magruder, C.W. White, R.A. Zuhr, H. Hosono, Probing interface properties of nanocomposites by third-order nonlinear optics. Appl. Phys. A. 62, 403 (1996)

    ADS  Google Scholar 

  40. I.O. Sosa, C. Noguez, R.G. Barrera, optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269 (2003)

    Google Scholar 

  41. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Google Scholar 

  42. A. Mishra, S. Ram, Surface-enhanced optical absorption and photoluminescence in nonbonding electrons in small poly(vinylpyrrolidone) molecules. J. Chem. Phys. 126, 084902 (2007)

    ADS  Google Scholar 

  43. A. Rout, G.S. Boltaev, R.A. Ganeev, Y. Fu, S.K. Maurya, V.V. Kim, K.S. Rao, C. Guo, Nonlinear optical studies of gold nanoparticle films. Nanomaterials 9, 291 (2019)

    Google Scholar 

  44. K. Zhang, R.A. Ganeev, K.S. Rao, S.K. Maurya, G.S. Boltaev, P.S. Krishnendu, Z. Yu, W. Yu, Y. Fu, C. Guo, Interaction of pulses of different duration with chemically prepared silver nanoparticles:analysis of optical nonlinearities. J Nanomater 2019, 6056528 (2019)

    Google Scholar 

  45. C.M. Aikens, S. Li, G.C. Schatz, From discrete electronic states to plasmons: TDDFT Optical Absorption Properties of Agn (n=10, 20, 35, 56, 84, 120) Tetrahedral Clusters. J. Phys. Chem. C 112, 11272 (2008)

    Google Scholar 

  46. S.K. Maurya, A. Rout, R.A. Ganeev, C. Guo, Effect of Size on the Saturable Absorption and Reverse SaturableAbsorption in Silver Nanoparticle and Ultrafast Dynamics at 400nm. J. Nanomater 2019, 9686913 (2019)

    Google Scholar 

  47. H.H. Mai, V.E. Kaydashev, V.K. Tikhomirov, E. Janssens, M.V. Shestakov, M. Meledina, S. Turner, G.V. Tendeloo, V.V. Moshchalkov, P. Lieven, Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host. J. Phys. Chem. C. 118, 15995 (2014)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key Research and Development Program of China (2018YFB1107202, 2017YFB1104700), The financial support from the Natural Science Foundation of China (91750205, 11774340, 11804334), K. C. Wong Education Foundation (GJTD-2018-08) and Jilin Provincial Science & Technology Development Project (20180414019GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Ganeev, R.A., Rout, A. et al. Influence of PVP polymer concentration on nonlinear absorption in silver nanoparticles at resonant excitation. Appl. Phys. A 126, 26 (2020). https://doi.org/10.1007/s00339-019-3208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3208-2

Navigation