Skip to main content

Long-Range Surface Plasmon Resonance-Induced Tunable Optical Bistability Using Silver Nano-layer at 1550 nm

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Abstract

A proposal towards analytical implementation of optical bistability in a multilayered configuration comprising a ZnSe prism, 1-µm-thick PMMA-DR1 (Polymethylmethacrylate-Disperse red) as dielectric layer, nano-Ag: polymeric composite material as a Kerr polymer and a 15-nm thin film of silver which is sandwiched between the dielectric layer and the Kerr polymer at incident light wavelength of 1550 nm with a beam waist of 0.5 mm is presented at 25 °C temperature. Here, the nonlinear Kerr medium is having quadratic dependence on the long-range surface plasmon polariton mode resonance-enhanced local electric field amplitude. Through the larger nonlinear effect of the optimized design by employing high local field effect in the nonlinear regime, a low threshold optical bistability of about 1.6 MW/cm2 in the transmitted light intensity is achieved. The reported threshold is less compared to the previous efforts where the works were carried out with a wavelength other than the important telecommunication wavelength within the C-band. The design also provides tunability of bistable threshold by exploitation of Kerr effect-induced refractive index change through varying pump light intensity. The proposed system proffers potential applications in all-optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu C, Song G, Liu H, Cui L, Li Yu, Xiao J (2013) Optical bistability of surface plasmon polaritons in nonlinear Kretschmann configuration. J Mod Opt 60:190–196

    Article  MathSciNet  Google Scholar 

  2. Xiang Y, Dai X, Guo J, Wen S, Tang D (2014) Tunable optical bistability at the graphene-covered nonlinear interface. Appl Phys Lett 04:051108

    Google Scholar 

  3. Gibbs HM (1985) Optical bistability: controlling light with light. Academic Press

    Google Scholar 

  4. Abraham E, Smith SD (1982) Optical bistability and related devices. Rep Prog Phys 45:815–885

    Article  Google Scholar 

  5. Nihei H, Okamoto A (2001) Photonic crystal systems for high-speed optical memory device on an atomic scale. Proc SPIE 4416:470–473

    Article  Google Scholar 

  6. Assanto G, Wang Z, Hagan DJ, Van Stryland EW (1995) All-optical modulation via nonlinear cascading in type II second harmonic generation. Appl Phys Lett 67:2120–2122

    Article  Google Scholar 

  7. Wang XL, Jiang HQ, Chen JX, Wang P, Lu YH, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19:19415–19421

    Article  Google Scholar 

  8. Wang GX, Lu H, Liu XM (2011) Optical bistability in metal-insulator metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl Opt 50:5287–5290

    Article  Google Scholar 

  9. Lin XS, Yan JH, Zheng YB, Wu LJ, Lan S (2011) Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures. Opt Express 19:9594–9599

    Article  Google Scholar 

  10. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  Google Scholar 

  11. Dai X, Jiang L, Xiang Y (2015) Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures. Opt Express 23:6497–6508

    Article  Google Scholar 

  12. Yanik MF, Fan SH, Soljacic M (2003) High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83:2739–2741

    Article  Google Scholar 

  13. Min C, Wang P, Chen C, Deng Y, Yonghua L, Ming H, Ning T, Zhou Y, Yang G (2008) All optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett 33:869–871

    Article  Google Scholar 

  14. Shen Y, Wang GP (2008) Optical bistability in metal gap waveguide nanocavities. Opt Express 16:8421–8426

    Article  Google Scholar 

  15. Litchinitser NM, Gabitov IR, Maimistov AI, Shalaev VM (2007) Effect of an optical negative index thin film on optical bistability. Opt Lett 32:151–153

    Article  Google Scholar 

  16. Litchinitser NM, Gabitov IR, Maimistov AI (2007) Optical bistability in a nonlinear optical coupler with a negative index channel. Phys Rev Lett 99:113902

    Article  Google Scholar 

  17. Chen P-Y, Farhat M, Alù A (2011) Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys Rev Lett 106:105503

    Article  Google Scholar 

  18. Tuz VR, Prosvirnin SL, Kochetova LA (2010) Optical bistability involving planar metamaterials with broken structural symmetry. Phys Rev B 82:233402

    Article  Google Scholar 

  19. Hickernell RK, Sarid D (1986) Optical bistability using prism-coupled, long-range surface plasmons. J Opt Soc Am B 3:1059

    Article  Google Scholar 

  20. Montemayor VJ, Deck RT (1986) Optical bistability with the waveguide mode: the case of a finite-width incident beam. J Opt Soc Am B 3:1211

    Article  Google Scholar 

  21. Nenninger GG, Tobiska P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens Actuators B Chem 74:145–151

    Article  Google Scholar 

  22. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photonics 1:484–588

    Article  Google Scholar 

  23. Wysin GM, Simon HJ, Deck RT (1981) Optical bistability with surface plasmons. Opt Lett 6:30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kar, A., Goswami, N., Saha, A. (2020). Long-Range Surface Plasmon Resonance-Induced Tunable Optical Bistability Using Silver Nano-layer at 1550 nm. In: Janyani, V., Singh, G., Tiwari, M., Ismail, T. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 648. Springer, Singapore. https://doi.org/10.1007/978-981-15-2926-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2926-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2925-2

  • Online ISBN: 978-981-15-2926-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics