Skip to main content

Advertisement

Log in

In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Films and microstructured scaffolds have been fabricated using direct laser writing out of different polymers: hybrid organic-inorganic ORMOCORE b59, acrylate-based AKRE23, novel organic-inorganic Zr containing hybrid SZ2080, and biodegradable PEG-DA-258. Adult myogenic stem cells were grown on these surfaces in vitro. Their adhesion, growth, and viability test results suggest good potential applicability of the materials in biomedical practice. Pieces of these polymers were implanted in rat’s paravertebral back tissue. Histological examination of the implants and surrounding tissue ex vivo after 3 weeks of implantation was conducted and results show the materials to be at least as biocompatible as surgical clips or sutures. The applied direct laser writing technique seems to offer good future prospects in a polymeric 3D scaffold design for artificial tissue engineering with autologous stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Charruyer, R. Ghadially, Stem cells and tissue-engineered skin. Skin Pharmacol. Physiol. 22(2), 55–62 (2009)

    Article  Google Scholar 

  2. W.-H. Zimmermann, I.M.T. Eschenhagen, Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9), 1639–1647 (2004). Animal Models for Tissue Engineering Applications

    Article  Google Scholar 

  3. A. Mantesso, P. Sharpe, Dental stem cells for tooth regeneration and repair. Expert Opin. Biol. Ther. 9(9), 1143–1154 (2009)

    Article  Google Scholar 

  4. A. Subramaniana, U. Krishnan, S. Sethuraman, Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16(1), 108 (2009)

    Article  Google Scholar 

  5. A. Atala, Tissue engineering, stem cells, and cloning for the regeneration of urologic organs. Clin. Plast. Surg. 30(4), 649–667 (2002)

    Article  Google Scholar 

  6. J. Ringe, C. Kaps, G.-R. Burmester, M. Sittinger, Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89, 338–351 (2002)

    Article  ADS  Google Scholar 

  7. O. Fisher, A. Khademhosseini, R. Langer, N. Peppas, Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43(3), 419–428 (2010)

    Article  Google Scholar 

  8. X. Liu, P. Ma, Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32(3), 477–486 (2004)

    Article  Google Scholar 

  9. V. Tsang, S. Bhatia, Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004)

    Article  Google Scholar 

  10. D. Howard, L. Buttery, K. Shakesheff, S. Roberts, Tissue engineering: strategies, stem cells, and scaffolds. J. Anat. 213, 66–72 (2008)

    Google Scholar 

  11. T. Hodgkinson, X. Yuan, A. Bayat, Adult stem cells in tissue engineering. Expert Rev. Med. Devices 6(6), 621–640 (2009)

    Article  Google Scholar 

  12. Y.-C. Kuo, S.-N. Leou, Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Eng. Life Sci. 10, 65–74 (2010)

    Article  Google Scholar 

  13. T. Qian, Y. Wang, Micro/nano-fabrication technologies for cell biology. Med. Biol. Eng. Comput. 48(10), 1023–1032 (2010)

    Article  Google Scholar 

  14. C. Metallo, J. Mohr, C. Detzel, J. de Pablo, B.V. Wie, S. Palecek, Engineering the stem cell microenvironment. Biotechnol. Prog. 23, 18–23 (2007)

    Article  Google Scholar 

  15. D. Meredith, L. Eschbach, M. Riehle, A. Curtis, R. Richards, Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion. J. Ortop. Res. 25, 1523–1533 (2007)

    Article  Google Scholar 

  16. D. Falconnet, G. Csucs, H. Grandin, M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006)

    Article  Google Scholar 

  17. Q. Xu, H. Lu, J. Zhang, G. Lu, Z. Deng, Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide. Int. J. Nanomed. 66(5), 331–335 (2010)

    Google Scholar 

  18. P. Tayalia, C. Mendonca, T. Baldacchini, D. Mooney, E. Mazur, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Adv. Mater. 20(23), 4494–4498 (2008)

    Article  Google Scholar 

  19. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regen. Med. 1, 443–449 (2008)

    Article  Google Scholar 

  20. F. Claeyssens, E. Hasan, A. Gaidukevičiutė, D. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikova, X. Shizhou, C. Fotakis, M. Vamvakaki, B. Chichkov, M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219–3223 (2009)

    Article  Google Scholar 

  21. T. Weiß, G. Hildebrand, R. Schade, K. Liefeith, Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci. 9(5), 384–390 (2009)

    Article  Google Scholar 

  22. M. Malinauskas, V. Purlys, M. Rutkauskas, R. Gadonas, Two-photon polymerization for fabrication of three-dimensional micro and nanostructures over a large area. Proc. SPIE 7204, 7204C (2009)

    ADS  Google Scholar 

  23. S. Gittard, R. Narayan, J. Lusk, P. Morel, F. Stockmans, M. Ramsey, C. Laverde, J. Phillips, N. Monteiro-Riviere, A. Ovsianikov, B. Chichkov, Rapid prototyping of scaphoid and lunate bones. Biotechnol. J. 4, 129–134 (2009)

    Article  Google Scholar 

  24. J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M. Spitzbart, Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng. 18, 125014 (2008)

    Article  ADS  Google Scholar 

  25. D. Cumming, S. Thoms, S. Beaumont, J. Weaver, Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett. 68(3), 322–324 (1996)

    Article  ADS  Google Scholar 

  26. W. Chen, H. Ahmed, Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl. Phys. Lett. 62(13), 1499–1501 (1993)

    Article  ADS  Google Scholar 

  27. C. Schizas, V. Melissinaki, A. Gaidukevičiutė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, D. Karalekas, On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol. 48(5), 435–441 (2010)

    Article  Google Scholar 

  28. M. Malinauskas, P. Danilevičius, D. Baltriukienė, M. Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Biċkauskaitė, V. Purlys, D. Paipulas, V. Bukelskienė, R. Gadonas, 3d artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lith. J. Phys. 50(1), 75–82 (2010)

    Article  Google Scholar 

  29. S. Passinger, A. Ovsianikov, R. Kiyan, C. Reinhardt, A. Ostendorf, B. Chichkov, Two-photon polymerization for industrial applications, in Proc. LPM (2008)

    Google Scholar 

  30. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiu̧tė, R. Gadonas, Femtosecond visible light induced two-photon photopolymerization for 3d micro/nanostructuring in photoresists and photopolymers. Lith. J. Phys. 50(2), 201–207 (2010)

    Article  Google Scholar 

  31. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Express 18(10), 10209–10221 (2010)

    Article  ADS  Google Scholar 

  32. M. Malinauskas, A. Žukauskas, G. Biċkauskaitė, M. Rutkauskas, K. Belazaras, H. Gilbergs, P. Danilevičius, V. Purlys, D. Paipulas, T. Gertus, R. Gadonas, A. Piskarskas, D. Baltriukienė, V. Bukelskienė, A. Gaidukevičiūtė, Fabrication of three-dimensional nanostructures by laser polymerization technique, in Proc. CYSENI 2010, pp. 354–366 (2010)

    Google Scholar 

  33. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, R. Gadonas, Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption. Lith. J. Phys. 50, 135–140 (2010)

    Article  Google Scholar 

  34. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11), 2257–2262 (2008)

    Article  Google Scholar 

  35. A. Ovsianikov, A. Gaidukevičiutė, B. Chichkov, M. Oubaha, B.D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M.F.C. Fotakis, Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem. 2008, 1–7 (2008)

    Article  Google Scholar 

  36. M. Farsari, M. Vamvakaki, B. Chichkov, Multiphoton polymerization of hybrid materials. J. Opt. (2010). doi:10.1088/2040-8978/12/12/124001

    Google Scholar 

  37. K. Gonsalves, L. Merhari, H. Wu, Y. Hu, Organic-inorganic nanocomposites: Unique resists for nanolithography. Adv. Mater. 13(10), 703–714 (2001)

    Article  Google Scholar 

  38. L. Almany, D. Seliktar, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3d cell cultures. Biomaterials 26, 2467–2477 (2005)

    Article  Google Scholar 

  39. S. Gabler, J. Stampf, T. Koch, S. Seidler, G. Schuller, H. Redl, V. Juras, S. Trattnig, R. Weidisch, Determination of the viscoelastic properties of hydrogels based on polyethylene glycol diacrylate(peg-da) and human articular cartilage. Int. J. Mater. Eng. Innov. 1(1), 3–20 (2009)

    Article  Google Scholar 

  40. M. Hahn, J. Miller, J. West, Three-dimensional biochemical and biomechanical patterning ofhydrogels for guiding cell behavior. Adv. Mater. 18(20), 2679–2684 (2006)

    Article  Google Scholar 

  41. R. Marchal, E. Nicolau, J.-P. Ballaguet, F. Bertoncini, Biodegradability of polyethylene glycol 400 by complex microfloras. Int. Biodeterior. Biodegrad. 62, 384–390 (2008)

    Article  Google Scholar 

  42. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Lobler, K. Sternberg, K. Schmitz, A. Haverich, Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7(3), 967–974 (2010)

    Article  Google Scholar 

  43. www.sigmaaldrich.com (2012)

  44. www.sartomer.com (2012)

  45. A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, R. Gadonas, Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique. Lith. J. Phys. 50(11), 55–61 (2010)

    Article  Google Scholar 

  46. S. Costantino, K. Heinze, O. Martínez, P.D. Koninck, P. Wiseman, Two-photon fluorescent microlithography for live-cell imaging. Microsc. Res. Tech. 68(5), 272–276 (2005)

    Article  Google Scholar 

  47. H.-B. Sun, T. Tanaka, K. Takada, S. Kawata, Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79(10), 1411 (2001)

    Article  ADS  Google Scholar 

  48. 3DPoli@gmail.com

  49. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, S. Kawata, Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett. 86(4), 044102 (2005)

    Article  ADS  Google Scholar 

  50. C. LaFratta, L. Li, J. Fourkas, Soft-lithographic replication of 3d microstructures with closed loops. Proc. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006)

    Article  ADS  Google Scholar 

  51. A. Seidel, C. Ohrt, S. Passinger, C. Reinhardt, R. Kiyan, B. Chichkov, Nanoimprinting of dielectric loaded surface-plasmon-polariton waveguides using masters fabricated by 2-photon polymerization technique. J. Opt. Soc. Am. B 26(4), 810–812 (2009)

    Article  ADS  Google Scholar 

  52. Y. Xia, G. Whitesides, Sof-lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  ADS  Google Scholar 

  53. V. Bukelskienė, D. Baltriukienė, D. Bironaitė, A. Imbrasaitė, R. Širmenis, M. Balčiunas, E. Žurauskas, A. Kalvelytė, Muscle-derived primary stem cell lines for heart repair. Semin. Cardiol. 11, 99–105 (2005)

    Google Scholar 

  54. R. Širmenis, V. Bukelskienė, V. Domkus, V. Sirvydis, Cellular cardiomyoplasty: isolation and cultivation of skeletal muscle satellite cells. Acta Med. Litu. 6, 178–181 (1999)

    Google Scholar 

  55. S. Mercille, B. Massie, Induction of apoptosis in nutrient-deprived cultures of hybridoma and myelonoma cells. Biotechnol. Bioeng. 44, 1140–1154 (1999)

    Article  Google Scholar 

  56. S. Akiyama, Integrins in cell adhesion and signaling, Hum. Cell 9(3), 181–186 (1996)

    MathSciNet  Google Scholar 

  57. B. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996)

    Article  Google Scholar 

  58. N. Hallab, K. Bundy, K. O’Connor, R. Moses, J. Jacobs, Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 7, 55–71 (2001)

    Article  Google Scholar 

  59. R. Lange, F. Luthen, U. Beck, J. Rychly, A. Baumann, B. Nebe, Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol. Eng. 19, 255–261 (2002)

    Article  Google Scholar 

  60. A. Khandwekar, D. Patil, A. Hardikar, Y. Shouche, M. Doble, In vivo modulation of foreign body response on polyurethane by surface entrapment technique. J. Biomed. Mater. Res., Part A 95(2), 413–423 (2010)

    Article  Google Scholar 

  61. P. Lips, M. van Luyn, F. Chiellini, L. Brouwer, I. Velthoen, P. Dijkstra, J. Feijen, Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation. J. Biomed. Mater. Res., Part A 76(4), 699–710 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lithuanian Science Council grant MIP-10344 (Creation of Artificial Tissues for Regenerative Medicine). Domas Paipulas and Gabija Bickauskaite (VU LRC) are acknowledged for image digital processing and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangirdas Malinauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinauskas, M., Baltriukiene, D., Kraniauskas, A. et al. In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers. Appl. Phys. A 108, 751–759 (2012). https://doi.org/10.1007/s00339-012-6965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6965-8

Keywords

Navigation