Skip to main content
Log in

Surface and interface electronic properties of AlGaN(0001) epitaxial layers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

AlGaN layers with Al content varying over the whole range of compositions were grown by molecular beam epitaxy (MBE) on n-6H-SiC substrates. The band gap energy is obtained from the vanishing of Fabry–Pérot oscillations in a fit to optical reflection spectra near the band gap absorption edge. The surface potential was determined by in-situ X-ray photoemission spectroscopy (XPS) and is found to increase as a function of the Al content from (0.5±0.1) eV to (1.3±0.1) eV, from GaN to AlN. A Si3N4 thin passivation layer was formed in-situ onto a 2DEG AlGaN/GaN structure. The mechanism underlying the passivation of high electron mobility transistor (HEMT) structures is suggested to be based on the formation of interface states, which keep the Fermi level fixed at a position close to that of the free AlGaN surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, IEEE Electron. Dev. Lett. 26, 781 (2005)

    Google Scholar 

  2. T. Palacios, C.S. Suh, A. Chakraborty, S. Keller, S.P. DenBaars, U.K. Mishra, IEEE Electron. Dev. Lett. 27, 428 (2006)

    Google Scholar 

  3. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R1024 (1997)

    Article  Google Scholar 

  4. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002)

    Article  ADS  Google Scholar 

  5. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 77, 250 (2000)

    Article  ADS  Google Scholar 

  6. I.P. Smorchkova, C.R. Elsass, J.P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S.P. Den-Baars, J.S. Speck, U.K. Mishra, J. Appl. Phys. 86, 4520 (1999)

    Article  ADS  Google Scholar 

  7. B. Jogai, J. Appl. Phys. 93, 1631 (2003)

    Article  ADS  Google Scholar 

  8. G. Koley, M.G. Spencer, Appl. Phys. Lett. 86, 042107 (2005)

    Article  ADS  Google Scholar 

  9. Y. Dong, R.M. Feenstra, J.E. Northrup, Appl. Phys. Lett. 89, 171920 (2006)

    Article  ADS  Google Scholar 

  10. D. Segev, C.G. Van De Walle, Europhys. Lett. 76, 305 (2006)

    Article  ADS  Google Scholar 

  11. M. Kocan, A. Rizzi, H. Lüth, S. Keller, U.K. Mishra, Phys. Stat. Solidi B 234, 773 (2002)

    Article  ADS  Google Scholar 

  12. C.H.F. Peden, J.W. Rogers, N.D. Shin, K.B. Kidd, K.L. Tsang, Phys. Rev. B 47, 15622 (1993)

    Article  ADS  Google Scholar 

  13. L. Chen, B.J. Skromme, R.F. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, J. Yang, M.A. Khan, M.L. Nakarmi, J.Y. Lin, H.-X. Jiang, Appl. Phys. Lett. 85, 1 (2004)

    Article  Google Scholar 

  14. E. Silveira, J.A. Freitas Jr., O.J. Glembocki, G.A. Slack, L.J. Schowalter, Phys. Rev. B 71, 041201(R) (2005)

  15. G.M. Prinz, A. Ladenburger, M. Schirra, M. Feneberg, K. Thonke, R. Sauer, Y. Taniyasu, M. Kasu, T. Makimoto, J. Appl. Phys. 101, 023511 (2007)

    Article  ADS  Google Scholar 

  16. L. Ohlidal, K. Navratil, F. Lukes, J. Opt. Soc. Am. 61, 1630 (1971)

    Article  ADS  Google Scholar 

  17. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996), p. 258

    MATH  Google Scholar 

  18. C.C. Kim, J.W. Garland, H. Abad, P.M. Raccah, Phys. Rev. B 45, 11749 (1992)

    Article  ADS  Google Scholar 

  19. W.J. Choyke, E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 587

    Google Scholar 

  20. A. Rizzi, H. Lüth, Nuovo Cim. D 20, 1039 (1998)

    Google Scholar 

  21. F. Bernardini, V. Fiorentini, D. Vanderbilt, Mater. Res. Soc. Symp. Proc. 449, 923 (1997)

    Google Scholar 

  22. K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, K.E. Attenkofer, R.C.C. Perera, E.M. Gullikson, J.H. Underwood, D.L. Ederer, Z. Liliental-Weber, Phys. Rev. B 61, 16623 (2000)

    Article  ADS  Google Scholar 

  23. R. Vetury, N.Q. Zhang, S. Keller, U.K. Mishra, IEEE Trans. Electron. Dev. 48, 560 (2001)

    Article  ADS  Google Scholar 

  24. W. Wang, J. Derluyn, M. Germain, M. Leys, S. Degroote, D. Schreurs, G. Borghs, Japan. J. Appl. Phys. 45, L224 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rizzi.

Additional information

PACS

73.20.-r; 73.40.-c; 73.40.Kp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzi, A., Kocan, M., Malindretos, J. et al. Surface and interface electronic properties of AlGaN(0001) epitaxial layers. Appl. Phys. A 87, 505–509 (2007). https://doi.org/10.1007/s00339-007-3873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3873-4

Keywords

Navigation