Skip to main content
Log in

The added value of coronary CTA in chronic total occlusion percutaneous coronary intervention: a systematic review and meta-analysis

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To systematically investigate and summarize the utility of coronary computed tomographic angiography (CCTA) in the management of chronic total occlusion (CTO)-percutaneous coronary intervention (PCI).

Methods

The authors searched the four databases between 2005 and 2023 for studies investigating the role of CCTA and invasive coronary angiograms (ICA) images when used as the pre-procedural tool for CTO-PCI. Efficacy and safety of CCTA in CTO-PCI treatment as a pre-procedural assessment tool was evaluated.

Results

Forty-seven studies were finally chosen for this systematic review. CCTA had a high degree of agreement with ICA when applied for J-CTO scoring system. A J-CTO (Multicenter CTO Registry in Japan) score > 3, together with calcification, occlusion length ≥ 20 mm, blunt stump, and bending > 45° were shared imaging risk factors on both ICA and CCTA for technique failure and guidewire crossing over 30 min. Additionally, negative remodeling and multiple diseased vessel were significant indicators on CCTA. Although patients with pre-procedural CCTA showed a trend of higher success rate and easier guidewire crossing, and CCTA showed a slightly higher predictive accuracy for process success, no significant improvement in post-PCI major adverse cardiac events of using CCTA for assessment has been achieved.

Conclusions

CCTA is a safe and effective pre-operative tool of CTO-PCI. Except for the shared imaging risk factors with ICA for a hard CTO-PCI including calcification, occlusion length ≥ 20 mm, blunt stump, bending > 45°, and J-CTO score > 3, factors like negative remodeling and multiple diseased vessel were also recognized as significant pre-operative assessment indicators on CCTA.

Clinical relevance statement

A pre-procedural assessment based on coronary computed tomographic angiography has the potential to aid in the management of chronic total occlusion percutaneous coronary intervention.

Key Points

• A coronary computed tomographic angiography–based pre-procedural assessment can help chronic total occlusion-percutaneous coronary intervention management.

• The recognized high-risk features detected via coronary computed tomographic angiography and invasive coronary angiograms are comparable in detecting difficult lesions and chronic total occlusion-percutaneous coronary intervention failure.

• Coronary computed tomographic angiography has an additional value to be a safe and effective pre-procedural assessment tool for chronic total occlusion-percutaneous coronary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CCTA:

Coronary computed tomographic angiography

CI:

Confidence interval

CTO:

Chronic total occlusion

ESUR:

European Society of Urogenital Radiology

ICA:

Interventional coronary angiograms

J-CTO:

Multicenter CTO Registry in Japan

LAD:

Left anterior descending artery

LCX:

Left circumflex artery

MACEs:

Major adverse cardiac events

NOS:

Newcaslte-Ottawa Scale

OR:

Odds ratio

PCI:

Percutaneous coronary intervention

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

RCA:

Right coronary artery

References

  1. Neumann FJ, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 40:87–165

    Article  PubMed  Google Scholar 

  2. Lee SW, Lee PH, Ahn JM et al (2019) Randomized trial evaluating percutaneous coronary intervention for the treatment of chronic total occlusion. Circulation 139:1674–1683

    Article  PubMed  Google Scholar 

  3. Stone GW (2019) Percutaneous coronary intervention of chronic total occlusions: conquering the final frontier. JACC Cardiovasc Interv 11:1336–1339

    Article  Google Scholar 

  4. Morino Y, Abe M, Morimoto T et al (2011) Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv 4:213–221

    Article  PubMed  Google Scholar 

  5. Alessandrino G, Chevalier B, Lefèvre T et al (2015) A clinical and angiographic scoring system to predict the probability of successful first-attempt percutaneous coronary intervention in patients with total chronic coronary occlusion. JACC Cardiovasc Interv 8:1540–1548

    Article  PubMed  Google Scholar 

  6. Opolski MP, Achenbach S, Schuhbäck A et al (2015) Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CT-RECTOR multicenter registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovasc Interv 8:257–267

    Article  PubMed  Google Scholar 

  7. SCOT-HEART Investigators, Newby DE, Adamson PD et al (2018) Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 379:924-933

  8. Werner GS (2019) Use of coronary computed tomographic angiography to facilitate percutaneous coronary intervention of chronic total occlusions. Circ Cardiovasc Interv 12:e007387

    Article  PubMed  Google Scholar 

  9. Opolski MP, Gransar H, Lu Y et al (2019) Prognostic value of chronic total occlusions detected on coronary computed tomographic angiography. Heart 105:196–203

    Article  CAS  PubMed  Google Scholar 

  10. Wang N, Fulcher J, Abeysuriya N, Adams M, Lal S (2018) Predictors of successful chronic total occlusion percutaneous coronary interventions: a systematic review and meta-analysis. Heart 104:517–524

    Article  PubMed  Google Scholar 

  11. Shamseer L, Moher D, Clarke M et al (2016) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 354:i4086

    Google Scholar 

  12. Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12

    Article  CAS  PubMed  Google Scholar 

  13. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  14. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  CAS  PubMed  Google Scholar 

  15. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mollet NR, Hoye A, Lemos PA et al (2005) Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 95:240–243

    Article  PubMed  Google Scholar 

  17. García-García HM, van Mieghem CA, Gonzalo N et al (2009) Computed tomography in total coronary occlusions (CTTO registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention 4:607–616

    Article  PubMed  Google Scholar 

  18. Cho JR, Kim YJ, Ahn CM et al (2009) Quantification of regional calcium burden in chronic total occlusion by 64-slice multi-detector computed tomography and procedural outcomes of percutaneous coronary intervention. Int J Cardiol 145:9–14

    Article  PubMed  Google Scholar 

  19. Li P, Gai LY, Yang X, Sun ZJ, Jin QH (2010) Computed tomography angiography-guided percutaneous coronary intervention in chronic total occlusion. J Zhejiang Univ Sci B 11:568–574

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hsu JT, Kyo E, Chu CM, Tsuji T, Watanabe S (2011) Impact of calcification length ratio on the intervention for chronic total occlusions. Int J Cardiol 150:135–141

    Article  PubMed  Google Scholar 

  21. Choi JH, Song YB, Hahn JY et al (2011) Three-dimensional quantitative volumetry of chronic total occlusion plaque using coronary multidetector computed tomography. Circ J 75:366–375

    Article  PubMed  Google Scholar 

  22. Martín-Yuste V, Barros A, Leta R et al (2012) Factors determining success in percutaneous revascularization of chronic total coronary occlusion: multidetector computed tomography analysis. Rev Esp Cardiol (Engl Ed) 65:334–340

    Article  PubMed  Google Scholar 

  23. Nombela-Franco L, Urena M, Jerez-Valero M et al (2013) Validation of the J-chronic total occlusion score for chronic total occlusion percutaneous coronary intervention in an independent contemporary cohort. Circ Cardiovasc Interv 6:635–643

    Article  PubMed  Google Scholar 

  24. Chen Y, Lu B, Hou ZH et al (2015) Predicting successful percutaneous coronary intervention in patients with chronic total occlusion: the incremental value of a novel morphological parameter assessed by computed tomography. Int J Cardiovasc Imaging 31:1263–1269

    Article  PubMed  Google Scholar 

  25. Luo C, Huang M, Li J et al (2015) Predictors of interventional success of antegrade PCI for CTO. JACC Cardiovasc Imaging 8:804–813

    Article  PubMed  Google Scholar 

  26. Li Y, Xu N, Zhang J et al (2015) Procedural success of CTO recanalization: comparison of the J-CTO score determined by coronary CT angiography to invasive angiography. J Cardiovasc Comput Tomogr 9:578–584

    Article  PubMed  Google Scholar 

  27. Christopoulos G, Wyman RM, Alaswad K et al (2015) Clinical utility of the Japan-Chronic Total Occlusion Score in coronary chronic total occlusion interventions: results from a multicenter registry. Circ Cardiovasc Interv 8:e002171

    Article  PubMed  Google Scholar 

  28. Ito T, Tsuchikane E, Nasu K et al (2015) Impact of lesion morphology on angiographic and clinical outcomes in patients with chronic total occlusion after recanalization with drug-eluting stents: a multislice computed tomography study. Eur Radiol 25:3084–3092

    Article  PubMed  Google Scholar 

  29. Christopoulos G, Kandzari DE, Yeh RW et al (2016) Development and validation of a novel scoring system for predicting technical success of chronic total occlusion percutaneous coronary interventions: the PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) score. JACC Cardiovasc Interv 9:1–9

    Article  PubMed  Google Scholar 

  30. Chai WL, Agyekum F, Zhang B et al (2016) Clinical prediction score for successful retrograde procedure in chronic total occlusion percutaneous coronary intervention. Cardiology 134:331–339

    Article  PubMed  Google Scholar 

  31. de Castro-Filho A, Lamas ES, Meneguz-Moreno RA et al (2017) Impact of the occlusion duration on the performance of J-CTO score in predicting failure of percutaneous coronary intervention for chronic total occlusion. J Invasive Cardiol 29:195–201

    PubMed  Google Scholar 

  32. Yu CW, Lee HJ, Suh J et al (2017) Coronary computed tomography angiography predicts guidewire crossing and success of percutaneous intervention for chronic total occlusion: Korean Multicenter CTO CT Registry Score as a tool for assessing difficulty in chronic total occlusion percutaneous coronary intervention. Circ Cardiovasc Imaging 10:e005800

    Article  PubMed  Google Scholar 

  33. Tan Y, Zhou J, Zhang W et al (2017) Comparison of CT-RECTOR and J-CTO scores to predict chronic total occlusion difficulty for percutaneous coronary intervention. Int J Cardiol 235:169–175

    Article  PubMed  Google Scholar 

  34. Namazi MH, Serati AR, Vakili H et al (2017) A novel risk score in predicting failure or success for antegrade approach to percutaneous coronary intervention of chronic total occlusion: antegrade CTO score. Int J Angiol 26:89–94

    Article  PubMed  Google Scholar 

  35. Jin C, Kim MH, Kim SJ et al (2017) Predicting successful recanalization in patients with native coronary chronic total occlusion: the Busan CTO score. Cardiology 137:83–91

    Article  PubMed  Google Scholar 

  36. Ellis SG, Burke MN, Murad MB et al (2017) Predictors of successful hybrid-approach chronic total coronary artery occlusion stenting: an improved model with novel correlates. JACC Cardiovasc Interv 10:1089–1098

    Article  PubMed  Google Scholar 

  37. Suzuki Y, Muto M, Yamane M et al (2017) Independent predictors of retrograde failure in CTO-PCI after successful collateral channel crossing. Catheter Cardiovasc Interv 90:E11–E18

    Article  PubMed  Google Scholar 

  38. Fujino A, Otsuji S, Hasegawa K et al (2018) Accuracy of J-CTO score derived from computed tomography versus angiography to predict successful percutaneous coronary intervention. JACC Cardiovasc Imaging 11:209–217

    Article  PubMed  Google Scholar 

  39. Maeremans J, Spratt JC, Knaapen P et al (2018) Towards a contemporary, comprehensive scoring system for determining technical outcomes of hybrid percutaneous chronic total occlusion treatment: the RECHARGE score. Catheter Cardiovasc Interv 91:192–202

    Article  PubMed  Google Scholar 

  40. Kalnins A, Strele I, Lejnieks A (2019) Comparison among different scoring systems in predicting procedural success and long-term outcomes after percutaneous coronary intervention in patients with chronic total coronary artery occlusions. Medicina (Kaunas) 55:494

    Article  PubMed  Google Scholar 

  41. Szijgyarto Z, Rampat R, Werner GS et al (2019) Derivation and validation of a chronic total coronary occlusion intervention procedural success score from the 20,000-patient EuroCTO Registry: the EuroCTO (CASTLE) score. JACC Cardiovasc Interv 12:335–342

    Article  PubMed  Google Scholar 

  42. Lee JY, Oh YW, Lim DS et al (2020) Relationship between coronary iodine concentration determined using spectral CT and the outcome of percutaneous coronary intervention in patients with chronic total occlusion. Radiol Cardiothorac Imaging 2:e190203

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gong M, Peng H, Wu Z et al (2021) Angiographic scoring system for predicting successful percutaneous coronary intervention of in-stent chronic total occlusion. J Cardiovasc Transl Res 14:598–609

    Article  PubMed  Google Scholar 

  44. Kalogeropoulos AS, Alsanjari O, Keeble TR et al (2020) CASTLE score versus J-CTO score for the prediction of technical success in chronic total occlusion percutaneous revascularisation. EuroIntervention 15:e1615–e1623

    Article  PubMed  Google Scholar 

  45. Kolk MZH, van Veelen A, Agostoni P et al (2021) Predictors and outcomes of procedural failure of percutaneous coronary intervention of a chronic total occlusion-a subanalysis of the EXPLORE trial. Catheter Cardiovasc Interv 97:1176–1183

    Article  PubMed  Google Scholar 

  46. Gong M, An T, Mao Y (2021) The impact of J-CTO score on in-stent chronic total occlusion percutaneous coronary intervention. Int J Clin Pract 75:e14824

    Article  CAS  PubMed  Google Scholar 

  47. Ochiumi Y, Yamamoto M, Tsuchikane E et al (2021) Predictors of prolonged guidewire manipulation time for native coronary chronic total occlusion percutaneous coronary intervention via primary antegrade approach. Catheter Cardiovasc Interv 98:E571–E580

    PubMed  Google Scholar 

  48. Ochiumi Y, Suzuki Y, Murata A, Ito T (2021) The evaluation of technical outcome and wire manipulation time within 30 min in patients with poor distal vessel quality on percutaneous coronary intervention for chronic total occlusion. Cardiovasc Interv Ther 36:67–73

    Article  PubMed  Google Scholar 

  49. Myat A, Galassi AR, Werner GS et al (2022) Retrograde chronic total occlusion percutaneous coronary interventions: predictors of procedural success from the ERCTO Registry. JACC Cardiovasc Interv 15:834–842

    Article  PubMed  Google Scholar 

  50. Li W, Wu Z, Peng H et al (2022) Predicting the success rate of elective percutaneous coronary intervention for prior failed chronic total occlusion: a novel scoring system. J Cardiovasc Transl Res 15:797–804

    Article  PubMed  Google Scholar 

  51. Habara M, Tsuchikane E, Shimizu K et al (2022) Japanese multicenter registry evaluating the antegrade dissection reentry with cardiac computerized tomography for chronic coronary total occlusion. Cardiovasc Interv Ther 37:116–127

    Article  PubMed  Google Scholar 

  52. Simsek B, Kostantinis S, Karacsonyi J et al (2022) Predictors of success in primary retrograde strategy in chronic total occlusion percutaneous coronary intervention: insights from the PROGRESS-chronic total occlusion registry. Catheter Cardiovasc Interv 100:19–27

    Article  PubMed  Google Scholar 

  53. Wang R, He Y, Xing H et al (2022) Inclusion of quantitative high-density plaque in coronary computed tomographic score system to predict the time of guidewire crossing chronic total occlusion. Eur Radiol 32:4565–4573

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu YT, Sha ZY, Chang SM et al (2022) Accuracy of the Euro CTO (CASTLE) score obtained on coronary computed tomography angiography for Predicting 30-minute wire crossing in chronic total occlusions. BMC Cardiovasc Disord 22:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li W, Wu Z, Liu T, Wu X, Liu J (2023) Long term clinical outcome after success re-attempt percutaneous coronary intervention of chronic total occlusion. BMC Cardiovasc Disord 23:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Du G, Cao M, Hou Z et al (2023) The value of quantitative plaque analysis based on coronary computed tomography angiography in predicting the percutaneous coronary intervention outcome of chronic total occlusion lesions. Quant Imaging Med Surg 13:1563–1576

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yin L, Teng B, Ma M, Lin Y, Chen B (2020) Predictive value of chronic total occlusion score based on coronary CT angiography in interventional treatment of chronic total occlusion of coronary artery. Chin J Radiol 54:17–22

    Google Scholar 

  58. Rolf A, Werner GS, Schuhbäck A et al (2013) Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion. Int J Cardiovasc Imaging 29:1819–1827

    Article  PubMed  Google Scholar 

  59. Hong SJ, Kim BK, Cho I et al (2021) Effect of coronary CTA on chronic total occlusion percutaneous coronary intervention: a randomized trial. JACC Cardiovasc Imaging 14:1993–2004

    Article  PubMed  Google Scholar 

  60. Cury RC, Leipsic J, Abbara S et al (2022) CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). JACC Cardiovasc Imaging 15:1974–2001

    Article  PubMed  Google Scholar 

  61. Simsek B, Jaffer FA, Kostantinis S et al (2022) Preprocedural coronary computed tomography angiography in chronic total occlusion percutaneous coronary intervention: Insights from the PROGRESS-CTO registry. Int J Cardiol 367:20–25

    Article  PubMed  Google Scholar 

  62. Li J, Wang R, Tesche C et al (2021) CT angiography-derived RECHARGE score predicts successful percutaneous coronary intervention in patients with chronic total occlusion. Korean J Radiol 22:697–705

    Article  PubMed  Google Scholar 

  63. van Driest FY, Bijns CM, van der Geest RJ et al (2022) Utilizing (serial) coronary computed tomography angiography (CCTA) to predict plaque progression and major adverse cardiac events (MACE): results, merits and challenges. Eur Radiol 32:3408–3422

    Article  PubMed  Google Scholar 

  64. Andreini D, Collet C, Leipsic J et al (2022) Pre-procedural planning of coronary revascularization by cardiac computed tomography: an expert consensus document of the Society of Cardiovascular Computed Tomography. EuroIntervention 18:e872–e887

    Article  PubMed  Google Scholar 

  65. Xenogiannis I, Jaffer FA, Shah AR et al (2021) Computed tomography angiography co-registration with real-time fluoroscopy in percutaneous coronary intervention for chronic total occlusions. EuroIntervention 17:e433–e435

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xi Y, Huang L, Hao J et al (2023) Predictive performance of the perivascular fat attenuation index for interventional antegrade percutaneous coronary intervention for chronic total occlusion. Eur Radiol 33:3041–3051

    Article  PubMed  Google Scholar 

  67. van der Molen AJ, Reimer P, Dekkers IA et al (2018) Post-contrast acute kidney injury - part 1: definition, clinical features, incidence, role of contrast medium and risk factors : Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 28:2845–2855

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li W, Diao K, Wen Y et al (2022) High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses. Eur Radiol 32:2912–2920

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Ling R, Yu L et al (2023) Deep learning segmentation and reconstruction for CT of chronic total coronary occlusion. Radiology 306:e221393

    Article  PubMed  Google Scholar 

  70. Zein R, Seth M, Othman H et al (2020) Association of Operator and Hospital Experience With Procedural Success Rates and Outcomes in Patients Undergoing Percutaneous Coronary Interventions for Chronic Total Occlusions: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Circ Cardiovasc Interv 13:e008863

    Article  PubMed  Google Scholar 

  71. Matsuno S, Habara M, Muramatsu T et al (2022) Operator experience and clinical outcomes of percutaneous coronary intervention for chronic total occlusion: insights from a pooled analysis of the Japanese CTO PCI Expert Registry and the Retrograde Summit General Registry. Cardiovasc Interv Ther 37:670–680

    Article  PubMed  Google Scholar 

  72. Liu T, Nie X, Wu Z et al (2017) Can statistic adjustment of OR minimize the potential confounding bias for meta-analysis of case-control study? A secondary data analysis. BMC Med Res Methodol 17:179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82200553), Key Research and Development Programs of Sichuan Province (No. 2023YFG0276), and the Key Research and Development Programs of Sichuan Province (No. 2022YFS0357).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaiyue Diao or Yong He.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yong He.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

The authors have significant statistical expertise.

Informed consent

Written informed consent was not required for this study because of the meta-analysis.

Ethical approval

Institutional Review Board approval was not required because of the meta-analysis.

Methodology

• Retrospective

• Performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.95 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Bai, Y., Zhang, J. et al. The added value of coronary CTA in chronic total occlusion percutaneous coronary intervention: a systematic review and meta-analysis. Eur Radiol (2023). https://doi.org/10.1007/s00330-023-10341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-023-10341-8

Keywords

Navigation