Skip to main content

Advertisement

Log in

Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To develop and validate an ultrasound (US) radiomics-based nomogram for the preoperative prediction of the lymphovascular invasion (LVI) status in patients with invasive breast cancer (IBC).

Materials and methods

In this multicentre, retrospective study, 456 consecutive women were enrolled from three institutions. Institutions 1 and 2 were used to train (n = 320) and test (n = 136), and 130 patients from institution 3 were used for external validation. Radiomics features that reflected tumour information were derived from grey-scale US images. The least absolute shrinkage and selection operator and the maximum relevance minimum redundancy (mRMR) algorithm were used for feature selection and radiomics signature (RS) building. US radiomics-based nomogram was constructed by using multivariable logistic regression analysis. Predictive performance was assessed with the receiving operating characteristic curve, discrimination, and calibration.

Results

The nomogram based on clinico-ultrasonic features (menopausal status, US-reported lymph node status, posterior echo features) and RS yielded an optimal AUC of 0.88 (95% confidence interval [CI], 0.84–0.91), 0.89 (95% CI, 0.84–0.94) and 0.95 (95% CI, 0.92–0.99) in the training, internal and external validation cohort. The nomogram outperformed the clinico-ultrasonic and RS model (p < 0.05). The nomogram performed favourable discrimination (C-index, 0.88; 95% CI: 0.84–0.91) and was confirmed in the validation (0.88 for internal, 0.95 for external) cohorts. The calibration and decision curve demonstrated the nomogram showed good calibration and was clinically useful.

Conclusions

The radiomics nomogram incorporated in the RS and US and the clinical findings exhibited favourable preoperative individualised prediction of LVI.

Clinical relevance statement

The US radiomics-based nomogram incorporating menopausal status, posterior echo features, US reported-ALN status, and radiomics signature has the potential to predict lymphovascular invasion in patients with invasive breast cancer.

Key Points

The clinico-ultrsonic model of menopausal status, posterior echo features, and US-reported ALN status achieved a better predictive efficacy for LVI than either of them alone.

The radiomics nomogram showed optimal prediction in predicting LVI from patients with IBC (ROC, 0.88 and 0.89 in the training and validation sets).

A nomogram demonstrated favourable performance (area under the receiver operating characteristic curve, 0.95) and well calibration (C-index, 0.95) in an independent validation cohort (n = 130).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALN:

Axillary lymph node

AUC:

Area under the ROC curve

GLSZM:

Grey-level size zone matrix

IBC:

Invasive breast cancer

LVI:

Lymphovascular invasion

NPV:

Negative predictive value

PPV:

Positive predictive value

ROC:

Receiving operating characteristics

RS:

Radiomics signature

VIF:

Variance inflation factor

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA (2015) Molecular mechanisms underlying lymphovascular invasion in invasive breast cancer. Pathobiology 82:113–123

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh P, Tie J, Muranyi A et al (2016) Girdin (GIV) Expression as a prognostic marker of recurrence in mismatch repair-proficient stage II colon cancer. Clin Cancer Res 22:3488–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mathieu R, Lucca I, Rouprêt M, Briganti A, Shariat SF (2016) The prognostic role of lymphovascular invasion in urothelial carcinoma of the bladder. Nat Rev Urol 13:471–479

    Article  CAS  PubMed  Google Scholar 

  5. Kus KJB, Murad F, Smile TD et al (2022) Higher metastasis and death rates in cutaneous squamous cell carcinomas with lymphovascular invasion. J Am Acad Dermatol 86:766–773

    Article  CAS  PubMed  Google Scholar 

  6. Cheng S-P, Lee J-J, Chien M-N, Kuo C-Y, Jhuang J-Y, Liu C-L (2020) Lymphovascular invasion of papillary thyroid carcinoma revisited in the era of active surveillance. Eur J Surg Oncol 46:1814–1819

    Article  PubMed  Google Scholar 

  7. Wang C, Wu Y, Shao J, Liu D, Li W (2020) Clinicopathological variables influencing overall survival, recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer. BMC Cancer 20:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sha N, Xie L, Chen T et al (2015) Impact of lymphovascular invasion on recurrence and progression rates in patients with pT1 urothelial carcinoma of bladder after transurethral resection. Onco Targets Ther 8:3401–3406

    PubMed  PubMed Central  Google Scholar 

  9. Liu YL, Saraf A, Lee SM et al (2016) Lymphovascular invasion is an independent predictor of survival in breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat 157:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamy A-S, Lam G-T, Laas E et al (2018) Lymphovascular invasion after neoadjuvant chemotherapy is strongly associated with poor prognosis in breast carcinoma. Breast Cancer Res Treat 169:295–304

    Article  PubMed  Google Scholar 

  11. Barron AU, Hoskin TL, Boughey JC (2018) Predicting non-sentinel lymph node metastases in patients with a positive sentinel lymph node after neoadjuvant chemotherapy. Ann Surg Oncol 25:2867–2874

    Article  PubMed  Google Scholar 

  12. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124:224–241

    Article  CAS  PubMed  Google Scholar 

  13. Hoda SA, Hoda RS, Merlin S, Shamonki J, Rivera M (2006) Issues relating to lymphovascular invasion in breast carcinoma. Adv Anat Pathol 13:308–315

    Article  PubMed  Google Scholar 

  14. Nasute Fauerbach PV, Tyryshkin K, Rodrigo SP et al (2021) Lack of definitive presurgical pathological diagnosis is associated with inadequate surgical margins in breast-conserving surgery. Eur J Surg Oncol 47:2483–2491

    Article  PubMed  Google Scholar 

  15. Aljohani AI, Toss MS, Kurozumi S et al (2020) The prognostic significance of wild-type isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer Res Treat 179:79–90

    Article  CAS  PubMed  Google Scholar 

  16. Kulkarni A, Carrion-Martinez I, Jiang NN et al (2020) Hypovascular pancreas head adenocarcinoma: CT texture analysis for assessment of resection margin status and high-risk features. Eur Radiol 30:2853–2860

    Article  PubMed  Google Scholar 

  17. Liu Z, Feng B, Li C et al (2019) Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. J Magn Reson Imaging 50:847–857

    Article  PubMed  Google Scholar 

  18. Li J, Jiang Y, Chen C et al (2020) Integrin β4 is an effective and efficient marker in synchronously highlighting lymphatic and blood vascular invasion, and perineural aggression in malignancy. Am J Surg Pathol 44:681–690

    Article  PubMed  Google Scholar 

  19. Huang Y, Liu Y, Wang Y et al (2021) Quantitative analysis of shear wave elastic heterogeneity for prediction of lymphovascular invasion in breast cancer. Br J Radiol 94:20210682

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou P, Jin C, Lu J et al (2021) The value of nomograms in pre-operative prediction of lymphovascular invasion in primary breast cancer undergoing modified radical surgery: based on multiparametric ultrasound and clinicopathologic indicators. Ultrasound Med Bio 47:517–526

    Article  Google Scholar 

  21. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  22. Mayerhoefer ME, Materka A, Langs G et al (2020) Introduction to radiomics. J Nucl Med 61:488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang L, Gu D, Wei J et al (2019) A Radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer 8:373–386

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Li Z, Qu J et al (2019) Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study. Clin Cancer Res 25:3538–3547

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Wang G, Ren J et al (2022) Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma. Eur Radiol 32:4079–4089

    Article  CAS  PubMed  Google Scholar 

  26. Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics 18(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205

    Article  CAS  PubMed  Google Scholar 

  28. Cheng J, Sun J, Yao K, Xu M, Cao Y (2022) A variable selection method based on mutual information and variance inflation factor. Spectrochim Acta A Mol Biomol Spectrosc 268:120652

    Article  CAS  PubMed  Google Scholar 

  29. Wolbers M, Koller MT, Witteman JCM, Steyerberg EW (2009) Prognostic models with competing risks: methods and application to coronary risk prediction. Epidemiology 20:555–561

    Article  PubMed  Google Scholar 

  30. Cheung SM, Husain E, Mallikourti V, Masannat Y, Heys S, He J (2021) Intra-tumoural lipid composition and lymphovascular invasion in breast cancer via non-invasive magnetic resonance spectroscopy. Eur Radiol 31:3703–3711

    Article  CAS  PubMed  Google Scholar 

  31. Lauria R, Perrone F, Carlomagno C et al (1995) The prognostic value of lymphatic and blood vessel invasion in operable breast cancer. Cancer 76:1772–1778

    Article  CAS  PubMed  Google Scholar 

  32. Çelebi F, Pilancı KN, Ordu Ç et al (2015) The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer. Diagn Interv Radiol 21:448–453

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wojcinski S, Stefanidou N, Hillemanns P, Degenhardt F (2013) The biology of malignant breast tumors has an impact on the presentation in ultrasound: an analysis of 315 cases. BMC Womens Health 13:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jimeno A, Rubio-Viqueira B, Amador ML et al (2005) Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer Res 65:3003–3010

    Article  CAS  PubMed  Google Scholar 

  35. Lee SK, Cho EY, Kim WW et al (2010) The prediction of lymph node metastasis in ductal carcinoma in situ with microinvasion by assessing lymphangiogenesis. J Surg Oncol 102:225–229

    Article  PubMed  Google Scholar 

  36. Morkavuk ŞB, Güner M, Çulcu S, Eroğlu A, Bayar S, Ünal AE (2021) Relationship between lymphovascular invasion and molecular subtypes in invasive breast cancer. Int J Clin Pract 75:e13897

    Article  CAS  PubMed  Google Scholar 

  37. Wong JS, O’Neill A, Recht A et al (2000) The relationship between lymphatic vessell invasion, tumor size, and pathologic nodal status: can we predict who can avoid a third field in the absence of axillary dissection? Int J Radiat Oncol Biol Phys 48:133–137

    Article  CAS  PubMed  Google Scholar 

  38. Du Y, Zha H-L, Wang H et al (2022) Ultrasound-based radiomics nomogram for differentiation of triple-negative breast cancer from fibroadenoma. Br J Radiol 95:20210598

    Article  PubMed  Google Scholar 

  39. Zheng X, Yao Z, Huang Y et al (2020) Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun 11:1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Y-Q, Liang C-H, He L et al (2016) Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol 34:2157–2164

    Article  PubMed  Google Scholar 

  41. Ugras S, Stempel M, Patil S, Morrow M (2014) Estrogen receptor, progesterone receptor, and HER2 status predict lymphovascular invasion and lymph node involvement. Ann Surg Oncol 21:3780–3786

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kurozumi S, Joseph C, Sonbul S et al (2019) A key genomic subtype associated with lymphovascular invasion in invasive breast cancer. Br J Cancer 120:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zong or Cuiying Li.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Min Zong and Prof. Cuiying Li.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

This retrospective study was approved by the institutional review board, the approval number was 2022-SR-421.

Study subjects or cohorts overlap

None.

Methodology

• retrospective

• Observational

• multicentre study

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 553 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Cai, M., Zha, H. et al. Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study. Eur Radiol 34, 136–148 (2024). https://doi.org/10.1007/s00330-023-09995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09995-1

Keywords

Navigation