Skip to main content
Log in

Wheat grain proteomic and protein–metabolite interactions analyses provide insights into plant growth promoting bacteria–arbuscular mycorrhizal fungi–wheat interactions

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Proteomic, protein–protein and protein–metabolite interaction analyses in wheat inoculated with PGPB and AMF identified key proteins and metabolites that may have a role in enhancing yield and biofortification.

Plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) have an impact on grain yield and nutrition. This dynamic yet complex interaction implies a broad reprogramming of the plant’s metabolic and proteomic activities. However, little information is available regarding the role of native PGPB and AMF and how they affect the plant proteome, especially under field conditions. Here, proteomic, protein–protein and protein–metabolite interaction studies in wheat triggered by PGPB, Bacillus subtilis CP4 either alone or together with AMF under field conditions was carried out. The dual inoculation with native PGPB (CP4) and AMF promoted the differential abundance of many proteins, such as histones, glutenin, avenin and ATP synthase compared to the control and single inoculation. Interaction study of these differentially expressed proteins using STRING revealed that they interact with other proteins involved in seed development and abiotic stress tolerance. Furthermore, these interacting proteins are involved in carbon fixation, sugar metabolism and biosynthesis of amino acids. Molecular docking predicted that wheat seed storage proteins, avenin and glutenin interact with secondary metabolites, such as trehalose, and sugars, such as xylitol. Mapping of differentially expressed proteins to KEGG pathways showed their involvement in sugar metabolism, biosynthesis of secondary metabolites and modulation of histones. These proteins and metabolites can serve as markers for improving wheat–PGPB–AMF interactions leading to higher yield and biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al. 2019) partner repository with the data set identifier PXD027072. Data are available via ProteomeXchange (http://www.proteomexchange.org) with identifier PXD027072.

Code availability

Not applicable.

References

  • Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP (2020) Tripartite mutualisms as models for understanding plant-microbial interactions. Curr Opin Plant Biol 56:28–36

    Article  CAS  PubMed  Google Scholar 

  • Afshar AS, Mousavi A, Majd A, Adam G (2007) Double mutation in tomato ribosomal protein L3 cDNA confers tolerance to deoxynivalenol (DON) in transgenic tobacco. Pak J Biol Sci 10:2327–2333

    Article  PubMed  Google Scholar 

  • Agtuca BJ, Stopka SA, Tuleski TR, do Amaral FP, Evans S, Liu Y, Xu D, Monteiro RA, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G (2020) In-situ metabolomic analysis of Setaria viridis roots colonized by beneficial endophytic bacteria. Mol Plant Microbe Interact 33:272–283

    Article  CAS  PubMed  Google Scholar 

  • Alibrandi P, Cardinale M, Rahman MM, Strati F, Ciná P, de Viana ML, Ciaccio M (2018) The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil 422:81–99

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Banaei-Asl F, Bandehagh A, Uliaei ED, Farajzadeh D, Sakata K, Mustafa G, Komatsu S (2015) Proteomic analysis of canola root inoculated with bacteria under salt stress. J Proteom 124:88–111

    Article  CAS  Google Scholar 

  • Barneix AJ (2007) Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol 164:581–590

    Article  CAS  PubMed  Google Scholar 

  • Begcy K, Walia H (2015) Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci 240:109–119

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170

    Article  PubMed  Google Scholar 

  • Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res 45:D313–D319

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann H, Broekaert W (1994) The role of thionins in plant protection. Crit Rev Plant Sci 13:1–16

    Article  CAS  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837

    Article  CAS  PubMed  Google Scholar 

  • Brígido C, Singh S, Menéndez E, Tavares MJ, Glick BR, Félix MDR, Carvalho M (2019) Diversity and functionality of culturable endophytic bacterial communities in chickpea plants. Plants 8:42

    Article  PubMed Central  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9

    Article  CAS  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    Article  Google Scholar 

  • Cândido ES, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL (2011) Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 25:3290–3305

    Article  CAS  Google Scholar 

  • Carnielli CM, Winck FV, Leme AFP (2015) Functional annotation and biological interpretation of proteomics data. Biochim et Biophys Acta (BBA)-Proteins Proteom 1854:46–54

    Article  CAS  Google Scholar 

  • Carninci P, Nishiyama Y, Westover A, Itoh M, Nagaoka S, Sasaki N, Hayashizaki Y (1998) Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full-length cDNA. Proc Natl Acad Sci 95:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW (2021) Gene regulation and cellular metabolism: an essential partnership. Trends Genet 37:389–400

    Article  CAS  PubMed  Google Scholar 

  • Castro-Torres E, Jimenez-Sandoval P, Fernández-de Gortari E, López-Castillo M, Baruch-Torres N, López-Hidalgo M, Peralta-Castro A, Díaz-Quezada C, Sotelo-Mundo RR, Benitez-Cardoza CG, Espinoza-Fonseca LM (2018) Structural basis for the limited response to oxidative and Thiol-conjugating agents by triosephosphate Isomerase from the photosynthetic bacteria synechocystis. Front Mol Biosci 5:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü (2018a) Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: impacts on photosynthetic traits and foliar volatile emissions. Sci Total Environ 645:721–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee P, Samaddar S, Niinemets Ü, Sa TM (2018b) Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiol Res 215:89–101

    Article  CAS  PubMed  Google Scholar 

  • Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY (2019) Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–837

    Article  CAS  PubMed  Google Scholar 

  • Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transpl 31:2003–2011

    Article  Google Scholar 

  • Clarke CI, Schober TJ, Arendt EK (2002) Effect of single strain and traditional mixed strain starter cultures on rheological properties of wheat dough and on bread quality. Cereal Chem 79:640–647

    Article  CAS  Google Scholar 

  • Corbin KR, Bolt B, López CMR (2020) Breeding for beneficial microbial communities using epigenomics. Front Microbiol 11:937

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrochano-Monsalve M, González-Murua C, Estavillo J-M, Estonba A, Zarraonaindia I (2020) Unraveling DMPSA nitrification inhibitor impact on soil bacterial consortia under different tillage systems. Agric, Ecosyst Environ 301:107029

    Article  CAS  Google Scholar 

  • Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S (2012) Mitochondrial F0F1-ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Br J Pharmacol 166:2331–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal Cortivo C, Ferrari M, Visioli G, Lauro M, Fornasier F, Barion G, Vamerali T (2020) Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Front Plant Sci 11:72

    Article  Google Scholar 

  • Deng Y, Hu Z, Shang L, Chai Z, Tang YZ (2020) Transcriptional responses of the heat shock protein 20 (Hsp20) and 40 (Hsp40) genes to temperature stress and alteration of life cycle stages in the harmful alga Scrippsiella trochoidea (Dinophyceae). Biology 9:408

    Article  CAS  PubMed Central  Google Scholar 

  • Dhawi F, Datta R, Ramakrishna W (2015) Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiol Biochem 97:390–399

    Article  CAS  PubMed  Google Scholar 

  • Dhawi F, Datta R, Ramakrishna W (2017) Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim et Biophys Acta (BBA)-Proteins Proteom 1865:243–251

    Article  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464

    Article  CAS  PubMed  Google Scholar 

  • Dogra N, Yadav R, Kaur M, Adhikary A, Kumar S, Ramakrishna W (2019) Nutrient enhancement of chickpea grown with plant growth promoting bacteria in local soil of Bathinda, North-western India. Physiol Mol Biol Plants 25:1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewart J (1967) Amino acid analyses of glutenins and gliadins. J Sci Food Agric 18:111–116

    Article  CAS  PubMed  Google Scholar 

  • Faleiro AC, Neto PAV, de Souza TV, Santos M, Arisi ACM (2015) Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. J Crop Sci Biotechnol 18:63–71

    Article  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Bachem CW, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S (2020) Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat Plants 6:55–66

    Article  PubMed  Google Scholar 

  • Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP (2007) Multidimensional separations-based shotgun proteomics. Chem Rev 107:3654–3686

    Article  CAS  PubMed  Google Scholar 

  • Francin-Allami M, Lollier V, Pavlovic M, San Clemente H, Rogniaux H, Jamet E, Larré C (2016) Understanding the remodelling of cell walls during Brachypodium distachyon grain development through a sub-cellular quantitative proteomic approach. Proteomes 4:21

    Article  PubMed Central  CAS  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Fraser D (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34

    Article  CAS  PubMed  Google Scholar 

  • Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M (1993) Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Genet Genom 8:409–418

    Article  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: research advances and progress in crop biofortification. Front Chem 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groot A, Bolt J, Jat HS, Jat ML, Kumar M, Agarwal T, Blok V (2019) Business models of SMEs as a mechanism for scaling climate smart technologies: the case of Punjab, India. J Clean Prod 210:1109–1119

    Article  Google Scholar 

  • He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y (2015) Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol 15:1–17

    Article  CAS  Google Scholar 

  • Hou J, Tian S, Yang L, Zhang Z, Liu Y (2021) A systematic review of the uridine diphosphate-galactose/glucose-4-epimerase (UGE) in plants. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00686-1

    Article  Google Scholar 

  • Ibort P, Imai H, Uemura M, Aroca R (2018) Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. J Plant Physiol 220:43–59

    Article  CAS  PubMed  Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaram VB, Cuyvers S, Lagrain B, Verstrepen KJ, Delcour JA, Courtin CM (2013) Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chem 136:301–308

    Article  CAS  PubMed  Google Scholar 

  • Jayaram VB, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014) Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem 151:421–428

    Article  CAS  PubMed  Google Scholar 

  • Jooste M, Roets F, Midgley GF, Oberlander KC, Dreyer LL (2019) Nitrogen-fixing bacteria and Oxalis–evidence for a vertically inherited bacterial symbiosis. BMC Plant Biol 19:441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang M, Abdelmageed H, Lee S, Reichert A, Mysore KS, Allen RD (2013) At MBP-1, an alternative translation product of LOS 2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP 5. Plant J 76:481–493

    Article  CAS  PubMed  Google Scholar 

  • Kant P, Gulati A, Harris L, Gleddie S, Singh J, Pauls K (2012) Transgenic corn plants with modified ribosomal protein L3 show decreased ear rot disease after inoculation with Fusarium graminearum. Aust J Crop Sci 6:1598–1605

    CAS  Google Scholar 

  • Kaur C, Sharma S, Singla-Pareek SL, Sopory SK (2015) Methylglyoxal, triose phosphate isomerase, and glyoxalase pathway: implications in abiotic stress and signaling in plants. Elucidation of abiotic stress signaling in plants. Springer, pp 347–366

    Chapter  Google Scholar 

  • Kavadia A, Omirou M, Fasoula DA, Louka F, Ehaliotis C, Ioannides IM (2021) Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Appl Soil Ecol 167:104013

    Article  Google Scholar 

  • Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA, McKay MJ, Mirzaei M, Salekdeh GH (2019) Plant-microbe symbiosis: what has proteomics taught us? Proteomics 19:e1800105

    Article  PubMed  CAS  Google Scholar 

  • Kierul K, Voigt B, Albrecht D, Chen X-H, Carvalhais LC, Borriss R (2015) Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161:131–147

    Article  CAS  PubMed  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    Article  CAS  Google Scholar 

  • Kumar V, Thakur JK, Prasad M (2021) Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 78:4467–4486

    Article  CAS  PubMed  Google Scholar 

  • Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS, Singh U, Saharan K (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol 35:1–17

    Article  CAS  Google Scholar 

  • Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Kim SG (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122–135

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Modeling 51:2778–2786

    Article  CAS  Google Scholar 

  • Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for drug discovery. Drug Discov Today 15:1052–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Pidatala RR, Ramakrishna W (2012) Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett 335:140–148

    Article  CAS  PubMed  Google Scholar 

  • Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W (2014) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loos J, Abson DJ, Chappell MJ, Hanspach J, Mikulcak F, Tichit M, Fischer J (2014) Putting meaning back into “sustainable intensification.” Front Ecol Environ 12:356–361

    Article  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Mahapatra S, Yadav R, Ramakrishna W (2022) Bacillus subtilis impact on plant growth, soil health and environment Dr Jekyll and Mr Hyde. J Appl Microbiol. https://doi.org/10.1111/jam.15480

    Article  PubMed  Google Scholar 

  • Maher G (1978) Rheological dough properties as affected by organic acids and slat. Inist-CNRS Database Pascal 55:683–691

    Google Scholar 

  • Mahmood A, Kataoka R (2020) Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res 234:126421

    Article  CAS  PubMed  Google Scholar 

  • Mamontova T, Afonin AM, Ihling C, Soboleva A, Lukasheva E, Sulima AS, Shtark OY, Akhtemova GA, Povydysh MN, Sinz A, Frolov A, Zhukov VA, Tikhonovich IA (2019) Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules 24:1603

    Article  CAS  PubMed Central  Google Scholar 

  • Massa N, Cesaro P, Todeschini V, Capraro J, Scarafoni A, Cantamessa S, Copetta A, Anastasia F, Gamalero E, Lingua G, Berta G (2020) Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Appl Soil Ecol 148:103507

    Article  Google Scholar 

  • Matsui K, Walker AR (2020) Biosynthesis and regulation of flavonoids in buckwheat. Breed Sci 70:74–84

    Article  PubMed  CAS  Google Scholar 

  • Megueni C, Awono ET, Ndjouenkeu R (2011) Simultaneous effect of dilution and combination of Rhizobia and mycorrhiza on foliar production and physico-chemical properties of young leaves of Vigna unguiculata (L.) Walp. J Appl Biosci 40:2668–2676

    Google Scholar 

  • Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M (2017) Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res 45:D170–D176

    Article  CAS  PubMed  Google Scholar 

  • Mishra MR, Srivastava R, Akhtar N (2018) Enhancing alkaloid production from cell culture system of Catharanthus roseus with different carbon sources. Eur J Biotechnol Biosci 6:12–20

    Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3:1–14

    CAS  Google Scholar 

  • Pankievicz VCS, do Amaral FP, Ané JM, Stacey G (2021) Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Mol Plant Microbe Interact 34:491–498

    Article  PubMed  Google Scholar 

  • Partida-Martinez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Jaramillo JE, Carrion VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:1–6

    Article  Google Scholar 

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    Article  CAS  PubMed  Google Scholar 

  • Plattner S, Gruber C, Stadlmann J, Widmann S, Gruber CW, Altmann F, Bohlmann H (2015) Isolation and characterization of a thionin proprotein-processing enzyme from barley. J Biol Chem 290:18056–18067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plessis A, Ravel C, Bordes J, Balfourier F, Martre P (2013) Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. J Exp Bot 64:3627–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE (2009) Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 583:983–991

    Article  CAS  PubMed  Google Scholar 

  • Pucci F, Rooman M (2017) Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 42:117–128

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Djabou ASM, An F, Li K, Li Z, Yang L, Wang X, Chen S (2017) Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration. PloS One 12:e0174238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramakrishna W, Yadav R, Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18

    Article  Google Scholar 

  • Ramakrishna W, Rathore P, Kumari R, Yadav R (2020) Brown gold of marginal soil: plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci Total Environ 711:135062

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Kishor PBK, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PloS One 9:e89125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez López CM, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:397

    PubMed  PubMed Central  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore K (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Saad MM, Eida AA, Hirt H (2020) Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot 71:3878–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar A, Rathore P, Ramteke PW, Ramakrishna W, Reddy MS, Pecoraro L (2021) Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms 9:1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanagopalan I, Basha E, Ballard KN, Bopp NE, Vierling E (2015) Model chaperones: small heat shock proteins from plants. the big book on small heat shock proteins. Springer, pp 119–153

    Chapter  Google Scholar 

  • Shen Y, Wei W, Zhou DX (2015) Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci 20:614–621

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Runthala A, Khan S, Jha PN (2017) Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PloS One 12:e0183513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smestad J, Erber L, Chen Y, Maher LJ III (2018) Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. Iscience 2:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares NC, Francisco R, Vielba JM, Ricardo CP, Jackson PA (2009) Associating wound-related changes in the apoplast proteome of Medicago with early steps in the ROS signal-transduction pathway. J Proteome Res 8:2298–2309

    Article  CAS  PubMed  Google Scholar 

  • Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ, Söding J (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform 20:1–15

    Article  CAS  Google Scholar 

  • Stringlis IA, de Jonge R, Pieterse CMJ (2019) The age of coumarins in plant–microbe interactions. Plant Cell Physiol 60:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobbe S, De Lepeleire J, Van Der Straeten D (2018) From in planta function to vitamin-rich food crops: the ACE of biofortification. Front Plant Sci 9:1862

    Article  PubMed  PubMed Central  Google Scholar 

  • Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T (2020) QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36:1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2014) Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. Plant Proteomics. Springer, pp 481–498

    Chapter  Google Scholar 

  • The UniProt Consortium (2021) UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021(49):D480–D489

    Article  CAS  Google Scholar 

  • Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Summers DK (2018) Efficient 3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes. Biotechnol J 13:1700571

    Article  CAS  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Su Z (2017) agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trefely S, Lovell CD, Snyder NW, Wellen KE (2020) Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 38:100941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Emon JM (2020) Omics in fruit nutrition: Concepts and application. In: Srivastava AK, Chengxiao H (eds) Fruit Crops. Elsevier, Amsterdam, pp 121–130

  • Vannini C, Domingo G, Fiorilli V, Seco DG, Novero M, Marsoni M, Wisniewski-Dye F, Bracale M, Moulin L, Bonfante P (2021) Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant growth-promoting bacteria modulates growth and defense in wheat. Plant, Cell Environ 44:1946–1960

    Article  CAS  Google Scholar 

  • Walden H, Bell GS, Russell RJ, Siebers B, Hensel R, Taylor GL (2001) Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 306:745–757

    Article  CAS  PubMed  Google Scholar 

  • Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506

    Article  CAS  PubMed  Google Scholar 

  • Walton A, Stes E, Cybulski N, Van Bel M, Inigo S, Durand AN, De Veylder L (2016) It’s time for some “site”-seeing: novel tools to monitor the ubiquitin landscape in Arabidopsis thaliana. Plant Cell 28:6–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Shewry PR, Hawkesford MJ (2013) A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain. J Exp Bot 64:161–168

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cao H, Chen F, Liu Y (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem 84:125–133

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu T-Y, Schadt CW (2012) Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Mol Plant Microbe Interact 25:765–778

    Article  CAS  PubMed  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR (2001) Yates, an automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65:1629–1640

    Article  CAS  PubMed  Google Scholar 

  • Xiang D, Man L (2018) EhEm1, a novel Em-like protein from Eutrema halophilum, confers tolerance to salt and drought stresses in rice. Mol Breeding 38:1–15

    Article  CAS  Google Scholar 

  • Xiang DJ, Man LL, Zhang CL, Li ZG, Zheng GC (2018) A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice. Protoplasma 255:1089–1106

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Ror P, Rathore P, Ramakrishna W (2020) Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiol Biochem 150:222–233

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Ror P, Rathore P, Kumar S, Ramakrishna W (2021a) Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. J Appl Microbiol 131:339–359

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Ror P, Beniwal R, Kumar S, Ramakrishna W (2021) Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial Superior performance in comparison with chemical fertilizers. J Appl Microbiol. https://doi.org/10.1111/jam.15371 (Epub ahead of print. PMID: 34800074)

    Article  PubMed  Google Scholar 

  • Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 141:1694–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q (2013) Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PloS One 8:e72840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Gao X, Dong J, Gandhi N, Cai H, von Wettstein DH, Wen S (2017) Pattern of protein expression in developing wheat grains identified through proteomic analysis. Front Plant Sci 8:962

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Lai Y, Wu X, Wu G, Guo C (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zancani M, Braidot E, Filippi A, Lippe G (2020) Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 53:178–193

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Li L, Song L, Liu Z, Li X, Li X (2020) HMW-GS at Glu-B1 locus affects gluten quality possibly regulated by the expression of nitrogen metabolism enzymes and glutenin-related genes in wheat. J Agric Food Chem 68:5426–5436

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, De Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorro SL, Haas M, Le Gras S, Nitsch S, Mourão A, Geerlof A, Margueron R, Michaelis J, Daujat S, Schneider R (2021) Succinylation of H3K122 destabilizes nucleosomes and enhances transcription. EMBO Reports 22:e51009

    Google Scholar 

  • Zuluaga MYA, Milani KML, Miras-Moreno MB, Lucini L, Valentinuzzi F, Mimmo T, Pii Y, Cesco S, Rodrigues EP, de Oliveira ALM (2021) The adaptive metabolomic profile and functional activity of tomato rhizosphere are revealed upon PGPB inoculation under saline stress. Environ Exp Bot 189:104552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RY acknowledges UGC, New Delhi, India for their financial assistance in the form of Junior Research Fellow (JRF) and Senior Research Fellow (SRF) during the Ph.D. program.

Funding

This project was funded by DST (SERB), Government of India (grant number EMR/2016/006311). Authors acknowledge equipment funding by DST-FIST (santion order number SR/FST/LS-I/2018/125(C)).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WR and SC: methodology, RY and SC: formal analysis, RY, SC: and WR: investigation, RY: resources, WR and SC: data curation, RY, SC and WR: writing-original draft preparation, RY and SC: writing-review and editing, RW: supervision, RW and SC: project administration, RW: funding acquisition, RW: all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wusirika Ramakrishna.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Tarek Hewezi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2511 KB)

Supplementary file2 (PDF 380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Chakraborty, S. & Ramakrishna, W. Wheat grain proteomic and protein–metabolite interactions analyses provide insights into plant growth promoting bacteria–arbuscular mycorrhizal fungi–wheat interactions. Plant Cell Rep 41, 1417–1437 (2022). https://doi.org/10.1007/s00299-022-02866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02866-x

Keywords

Navigation