Skip to main content

Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Methylglyoxal (MG) is a cytotoxic metabolite inevitably produced as a side product of primary metabolic pathways via both enzymatic and non-enzymatic reactions. In plants, spontaneous generation of MG through breakdown of triose sugars (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) is believed to be the major route for MG formation. MG is maintained at basal levels in plants under normal conditions that accumulate to higher concentrations under various stresses, probably as a general consequence of all abiotic stresses. The toxic effects of MG is due to its ability to induce oxidative stress in cells, either directly through increased generation of reactive oxygen species (ROS) or indirectly via advanced glycation end product (AGE) formation. Thus, elevated MG levels have implications in inhibition of growth and development in plants. To keep MG levels in check, the two-step glyoxalase pathway comprising glyoxalase I (GLYI) and glyoxalase II (GLYII) enzymes has evolved as the major MG-scavenging detoxification system that converts MG to d-lactate using glutathione as a cofactor in this process. Over-expression of glyoxalase pathway has been shown to confer tolerance to multiple stresses that works by controlling MG levels and maintaining glutathione homeostasis in plants. Moreover, increased activity of triose phosphate isomerase under different stresses that use up triose sugars via glycolysis further prevents MG levels from accumulating in the system along with increasing the energy status of plants. Considering the fact that MG levels are maintained at a threshold concentration in plants even under physiological conditions and also observed MG-dependent induction in expression of triose phosphate isomerase, a role for MG in signaling pathways is suggested. Here, we provide an insight to the role of MG and glyoxalases in plant stress response with special mention about the possible involvement of MG in signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed N, Thornalley PJ (2002) Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatisation with aminoquinolyl-N-hydroxysuccimidyl-carbamate and intrinsic fluorescence. Biochem J 364:15–24

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ (2002) Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatisation by 6-aminoquinolyl-N-hydroxysuccimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin. Biochem J 364:1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ (2005) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603

    CAS  PubMed  Google Scholar 

  • Akhand AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, Kurokawa K, Nakashima I (2001) Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med 31:20–30

    CAS  PubMed  Google Scholar 

  • Aleksandrovskii YA (1992) Antithrombin III, C1 inhibitor, methylglyoxal, and polymorphonuclear leukocytes in the development of vascular complications in diabetes mellitus. Thromb Res 67:179–189

    CAS  PubMed  Google Scholar 

  • Alvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290

    CAS  PubMed  Google Scholar 

  • Babel W, Hofmann KH (1981) The conversion of triosephosphate via methylglyoxal, a bypass to the glycolytic sequence in methylotrophic yeasts? FEMS Microbiol Lett 10:133–136

    CAS  Google Scholar 

  • Banu MN, Hoque MA, Watanabe-Sugimoto M, Islam MM, Uraji M, Matsuoka K, Nakamura Y, Murata Y (2010) Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Biosci Biotechnol Biochem 74:2043–2049

    CAS  PubMed  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Poggin K, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181

    CAS  Google Scholar 

  • Blomstedt CK, Gianello RD, Hamill JD, Neale AD, Gaff DF (1998) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul 24:153–161

    CAS  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    CAS  PubMed  Google Scholar 

  • Botha FC, Small JGC, Grobbelaar N (1984) The effect of water stress on the respiration and some aspects of respiratory metabolism of Citrullus lanatus seeds. Seed Sci Technol 12:585–595

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brown BE, Dean RT, Davies MJ (2005) Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia 48:361–369

    CAS  PubMed  Google Scholar 

  • Casazza JP, Felver ME, Veech RL (1984) The metabolism of acetone in rat. J Biol Chem 259:231–236

    CAS  PubMed  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    CAS  PubMed  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    CAS  PubMed  Google Scholar 

  • Chaplen FW, Fahl WE, Cameron DC (1998) Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc Natl Acad Sci U S A 95:5533–5538

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22:77–90

    PubMed Central  PubMed  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2004) Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology 94:938–945

    CAS  PubMed  Google Scholar 

  • Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38:49–68

    CAS  PubMed  Google Scholar 

  • Crook EM, Law K (1952) Glyoxalase: the role of the components. Biochem J 52:492–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dorion S, Clendenning A, Jeukens J, Salas JJ, Parveen N, Haner AA, Law RD, Force EM, Rivoal J (2010) A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism. Planta 236:1177–1190

    Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JF (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant: upregulation by stress. Plant Mol Biol 29:1223–1233

    CAS  PubMed  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fraire-Velázquez S, Balderas-Hernández VE (2013) Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. Intechopen, Rijeka. ISBN 978-953-51-1024-8

    Google Scholar 

  • Fukunaga M, Miyata S, Higo S, Hamada Y, Ueyama S, Kasuga M (2005) Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells. Ann N Y Acad Sci 1043:151–157

    CAS  PubMed  Google Scholar 

  • Grass L, Burris JS (1995) Effect of heat stress during seed development and maturation on wheat (Triticum durum) seed quality. II. Mitochondrial respiration and nucleotide pools during early germination. Can J Plant Sci 75:831–839

    CAS  Google Scholar 

  • Hegedüs A, Erdei S, Janda T, Tóth E, Horváth G, Dudits D (2004) Transgenic tobacco plants overproducing alfalfa aldose/aldehydes reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166:1329–1333

    Google Scholar 

  • Hopper DJ, Cooper RA (1971) The regulation of Escherichia coli methylglyoxal synthase: a new control site in glycolysis? FEBS Lett 13:213–216

    CAS  PubMed  Google Scholar 

  • Hopper DJ, Cooper RA (1972) The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J 128:321–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Banu MNA, Mori IC, Nakamura Y, Murata Y (2010) The effect of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74:2124–2126

    CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Torii A, Banu MN, Mori IC, Nakamura Y, Murata Y (2012a) Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 26:315–321

    CAS  PubMed  Google Scholar 

  • Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y (2012b) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619

    CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y (2012c) Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol (Stuttg) 14:854–858

    CAS  Google Scholar 

  • Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y (2012d) Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 169:979–986

    CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73:2007–2013

    CAS  PubMed  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aus J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Jia X, Chang T, Wilson TW, Wu L (2012) Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS One 7:e36610

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph-McCarthy D, Lolis E, Komives EA, Petsko GA (1994) Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site. Biochemistry 33:2815–2823

    CAS  PubMed  Google Scholar 

  • Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175

    CAS  PubMed  Google Scholar 

  • Kalapos MP, Garzo T, Antoni F, Mandal J (1992) Accumulation of S-D lactoylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes. Biochim Biophys Acta 113:159–64

    Google Scholar 

  • Kaur C, Vishnoi A, Ariyadasa TU, Bhattacharya A, Singla-Pareek SL, Sopory SK (2013) Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep 3:3076

    PubMed Central  PubMed  Google Scholar 

  • Kaur C, Mustafiz A, Sarkar A, Ariyadasa TU, Singla-Pareek SL, Sopory SK (2014) Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant 152:1–16

    CAS  PubMed  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman J-F (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    CAS  PubMed  Google Scholar 

  • Ko J, Kim I, Yoo S, Min B, Kim K, Park C (2005) Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J Bacteriol 187:5782–5789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koop DR, Casazza JP (1985) Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem 260:13607–13612

    CAS  PubMed  Google Scholar 

  • Kwon K, Choi D, Hyun JK, Jung HS, Baek K, Park C (2013) Novel glyoxalases from Arabidopsis thaliana. FEBS J 280:3328–3339

    CAS  PubMed  Google Scholar 

  • Lee JY, Song J, Kwon K, Jang S, Kim C, Baek K, Kim J, Park C (2012) Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 21:3215–3225

    CAS  PubMed  Google Scholar 

  • Leoncini G (1979) The role of alpha-oxoaldehydes in biological systems. Ital J Biochem 28:285–294

    CAS  PubMed  Google Scholar 

  • Lin F, Xu SL, Ni WM, Chu ZQ, Xu ZH, Xue HW (2003) Identification of ABA-responsive genes in rice shoots via cDNA macroarray. Cell Res 13:59–68

    CAS  PubMed  Google Scholar 

  • Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735

    CAS  PubMed  Google Scholar 

  • Lin J, Nazarenus TJ, Frey JL, Liang X, Wilson MA, Stone JM (2011) A plant DJ-1 homolog is essential for Arabidopsis thaliana chloroplast development. PLoS One 6:e23731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Zhang M, Duan J, Wu K (2008) Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure. J Plant Physiol 165:1855–1864

    CAS  PubMed  Google Scholar 

  • Long GL, Kaplan NO (1968) D-lactate specific pyridine nucleotide lactate dehydrogenase in animals. Science 162:685–686

    CAS  PubMed  Google Scholar 

  • Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414

    CAS  PubMed  Google Scholar 

  • Maeta K, Izawa S, Okazaki S, Kuge S, Inoue Y (2004) Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24:8753–8764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maeta K, Izawa S, Inoue Y (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260

    CAS  PubMed  Google Scholar 

  • Mankikar S, Rangekar P (1974) Effects of methylglyoxal on germination of barley. Fyton 32:9–16

    CAS  Google Scholar 

  • Martins AM, Cordeiro CA, Ponces Freire AM (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44

    CAS  PubMed  Google Scholar 

  • Meyerhof O, Lohmann K (1934) Ãœber die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonphosphorsäure. Biochem Z 271:89–110

    CAS  Google Scholar 

  • Minhas D, Grover A (1991) Transcript levels of genes encoding various glycolytic and fermentation enzymes change in response to abiotic stresses. Plant Sci 146:41–51

    Google Scholar 

  • Misra K, Banerjee AB, Ray S, Ray M (1995) Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 305:999–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan PE, Sheahan PJ, Pattison DI, Davies MJ (2013) Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes. Free Radic Biol Med 61C:229–242

    Google Scholar 

  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22:586–598

    CAS  PubMed  Google Scholar 

  • Murata K, Fukuda Y, Watanabe K, Saikusa T, Shimosaka M, Kimura A (1985) Characterization of methylglyoxal synthase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 131:190–198

    CAS  PubMed  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11:293–305

    CAS  PubMed  Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 117:508–520

    CAS  PubMed  Google Scholar 

  • Narawongsanont R, Kabinpong S, Auiyawong B, Tantitadapitak C (2012) Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice. Protein J 31:35–42

    CAS  PubMed  Google Scholar 

  • Nomura W, Maeta K, Kita K, Izawa S, Inoue Y (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: Methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha. Biochem Biophys Res Commun 376:738–742

    CAS  PubMed  Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    CAS  PubMed  Google Scholar 

  • Pichersky E, Gottlieb LD (1984) Plant triose phosphate isomerase isozymes: purification, immunological and structural characterization, and partial amino Acid sequences. Plant Physiol 74:340–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pratt EA, Fung LW, Flowers JA, Ho C (1979) Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry 18:312–316

    CAS  PubMed  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718

    CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42:1133–1142

    CAS  PubMed  Google Scholar 

  • Racker E (1951) The mechanism of action of glyoxalase. J Biol Chem 190:685–696

    CAS  PubMed  Google Scholar 

  • Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, El Amrani A, Couée I, Gouesbet G (2007) Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450

    PubMed Central  PubMed  Google Scholar 

  • Ray S, Ray M (1981) Isolation of methylglyoxal synthase from goat liver. J Biol Chem 256:6230–6233

    CAS  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richard JP (1984) Acid–base catalysis of the elimination and isomerization-reactions of triose phosphates. J Am Chem Soc 106:4926–4936

    CAS  Google Scholar 

  • Richard JP (1991) Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry 30:4581–4585

    CAS  PubMed  Google Scholar 

  • Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans 21:549–553

    CAS  PubMed  Google Scholar 

  • Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C (2011) Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes. Plant Cell Environ 34:1454–1464

    CAS  PubMed  Google Scholar 

  • Saxena M, Roy SB, Singla-Pareek SL, Sopory SK, Bhalla-Sarin N (2011) Overexpression of the Glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28

    CAS  Google Scholar 

  • Schneider AS (2000) Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Baillieres Best Pract Res Clin Haematol 13:119–140

    CAS  PubMed  Google Scholar 

  • Schneider AS, Valentine WN, Hattori M, Heins HL Jr (1965) Hereditary hemolytic anemia with triosephosphate isomerase deficiency. N Engl J Med 272:229–235

    CAS  PubMed  Google Scholar 

  • Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK (2012) Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signal Behav 7:1337–1345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP (2009) Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392:465–480

    CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    CAS  PubMed  Google Scholar 

  • Sobhanian H, Motamed N, Rastgar Jazii F, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a Halophyte C4 Plant. J Proteome Res 9:2882–2897

    CAS  PubMed  Google Scholar 

  • Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51:997–1006

    CAS  PubMed  Google Scholar 

  • Takatsume Y, Izawa S, Inoue Y (2006) Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J Biol Chem 281:9086–9092

    CAS  PubMed  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    CAS  PubMed  Google Scholar 

  • Thornalley PJ (1998) Glutathione-dependent detoxification of α-oxoaldehyde by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    PubMed  Google Scholar 

  • Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Waris S, Fleming T, Santarius T, Larkin SJ, Winklhofer-Roob BM, Stratton MR, Rabbani N (2010) Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance. Nucleic Acids Res 38:5432–5442

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turk Z, Nemet I, Varga-Defteardarovic L, Car N (2006) Elevated level of methylglyoxal during diabetic ketoacidosis and its recovery phase. Diabetes Metab 32:176–180

    CAS  PubMed  Google Scholar 

  • Turóczy Z, Kis P, Török K, Cserháti M, Lendvai A, Dudits D, Horváth GV (2011) Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol Biol 75:399–412

    PubMed  Google Scholar 

  • Umeda M, Uchimiya H (1994) Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol 106:1015–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    CAS  PubMed  Google Scholar 

  • von Pechmann H (1887) Ãœber die Spaltung der Nitrosoketone. Ber Dtsch Chem Gesells 20:3213–3214

    Google Scholar 

  • Wang SB, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29

    CAS  PubMed  Google Scholar 

  • Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol Plant 55:536–540

    CAS  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Juurlink BH (2002) Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39:809–814

    CAS  PubMed  Google Scholar 

  • Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H (2013) Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. J Plant Res 126:415–425

    CAS  PubMed  Google Scholar 

  • Xu Y, Yu H, Hall TC (1994) Rice triosephosphate isomerase gene 5′ sequence directs [beta]-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol 106:459–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Zuin A, Vivancos AP, Sansó M, Takatsume Y, Ayté J, Inoue Y, Hidalgo E (2005) The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe. J Biol Chem 280:36708–36713

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaur, C., Sharma, S., Singla-Pareek, S.L., Sopory, S.K. (2015). Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2211-6_13

Download citation

Publish with us

Policies and ethics