Skip to main content
Log in

Sustainable recycling of polymers: a comprehensive review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The commercial use of polymers has expanded considerably in recent decades, resulting in exponential expansion in the polymer production business. As a result, polymer recycling is critical to the circular economy’s sustainability. Governments and organizations are making significant efforts to reduce the carbon footprint generated by the use of synthetic polymers. Organizations such as the United Nations routinely launch initiatives worldwide to educate people and limit plastic manufacture. UNEP aims to reduce plastic output by 80% by 2040 by establishing a circular economy between the production and use of plastic. The manufacturing industry likewise takes huge steps to lessen its reliance on plastic. The industry is developing new ways and technologies to recycle these polymers sustainably. This paper studies and examines waste thermoplastic and thermoset material recycling initiatives made by other researchers. Various forms of recycling, primary, secondary, thermal, chemical, and biological are explored along with the sustainability of that particular recycling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

ASTM:

American Society of Testing and materials

Bio-PA:

Bio-polyamide

Bio-PBAT:

Bio-polybutylene adipate terephthalate

Bio-PBS:

Bio-based poly butylene succinate

Bio-PC:

Bio-phosphatidylcholine

BIO-PE:

Bio-based polyethylene

BIO-PET:

Bio-based polyethylene terephthalate

BIO-PP:

Bio-based polypropylene

C2C:

Cradle to cradle

CA:

Cellulose acetate

CEN:

European Committee for Standardization

CFRC:

Carbon fiber reinforced composites

GHG:

Green house gas

HDPE:

High-density polyethylene

HMF:

Hydroxymethylfurfural

ISO:

International Organization of Standardization

LCA:

Life cycle assessment

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

MAH:

Maleic anhydride

PAI:

Polyamide-imide

PBAT:

Polybutylene adipate terephthalate

PBS-G-MAH:

Poly(butylene succinate) grafted with maleic anhydride

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PCL:

Posterior cruciate ligament

PE:

Polyethylene

PEF:

Polyethylene 2,5-furandicarboxylate

PET:

Polyethylene terephthalate

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

PLA:

Polylactic acid

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PPP:

Poly(p-phenylene)

PS:

Polystyrene

PVA:

Polyvinyl alcohol

Tc:

Ceiling temperature

Tg:

Transition temperature

References

  1. Allahvaisi S (2012) Polypropylene in the industry of food packaging, pp 978–953

  2. Bayer FL (2002) Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective. Food Addit Contam 19(S1):111–134

    Article  CAS  PubMed  Google Scholar 

  3. Hong M, Chen EY-X (2017) Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem 19(16):3692–3706

    Article  CAS  Google Scholar 

  4. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Nishida MH (2011) Development of materials and technologies for control of polymer recycling. Polym J 43(5):435–447

    Article  CAS  Google Scholar 

  6. Chandran MS (2018) Fabrication and mechanical analysis of jute-sisal hybrid composite. ARPN J Eng Appl Sci 13(5):1674–1677

    Google Scholar 

  7. Gubanova E, Kupinets L, Deforzh H, Koval V, Gaska K (2019) Recycling of polymer waste in the context of developing circular economy. Archit Civ Eng Environ 12(4):99–108

    Google Scholar 

  8. Matthews C, Moran F, Jaiswal AK (2021) A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J Clean Prod 283:125263

    Article  Google Scholar 

  9. Atanase LI, Lerch JP, Caprarescu S, Iurciuc CE, Riess G (2017) Micellization of p H-sensitive poly (butadiene)-block-poly (2 vinylpyridine)-block-poly (ethylene oxide) triblock copolymers: complex formation with anionic surfactants. J Appl Polym Sci 134:45313

    Article  Google Scholar 

  10. Xu G, Wang Q (2022) Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green Chem 24(6):2321–2346

    Article  CAS  Google Scholar 

  11. Greer SC (1998) Physical chemistry of equilibrium polymerization. J Phys Chem B 102(28):5413–5422

    Article  CAS  Google Scholar 

  12. Coates GW, Getzler YD (2020) Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 5(7):501–516

    Article  ADS  CAS  Google Scholar 

  13. Wang Y-F (2002) High molecular weight copolyesters from macrocyclic oligoesters and cyclic esters. Google Patents

  14. Pang K, Kotek R, Tonelli A (2006) Review of conventional and novel polymerization processes for polyesters. Prog Polym Sci 31(11):1009–1037

    Article  CAS  Google Scholar 

  15. Sandlin E (2003) Improving markets for recycled products. Biocycle 44(3):54–54

    Google Scholar 

  16. Government of Japan (2021) Roadmap for bioplastics introduction—for the sustainable use of plastics, p 43

  17. Hussain A, Podgursky V, Viljus M, Awan MR (2023) The role of paradigms and technical strategies for implementation of the circular economy in the polymer and composite recycling industries. Adv Ind Eng Polym Res 6:1–12

    CAS  Google Scholar 

  18. Nissen NF (2019) ErP—the European directive on ecodesign. In: Waste electrical and electronic equipment (WEEE) handbook. Elsevier, pp 423–441

  19. Lens-Pechakova LS (2021) Recent studies on enzyme-catalysed recycling and biodegradation of synthetic polymers. Adv Ind Eng Polym Res 4(3):151–158

    CAS  Google Scholar 

  20. Sala S, Dewulf J, Benini L (2014) Indicators and targets for the reduction of the environmental impact of EU consumption: methodology for 2020 targets based on environmental impact indicators. Deliverable

  21. Barkhausen R, Durand A, Fick K (2022) Review and analysis of ecodesign directive implementing measures: product regulations shifting from energy efficiency towards a circular economy. Sustainability 14(16):10318

    Article  Google Scholar 

  22. Dhinakaran V, Surendar KV, Riyaz MH, Ravichandran M (2020) Review on study of thermosetting and thermoplastic materials in the automated fiber placement process. Mater Today: Proc 27:812–815

    CAS  Google Scholar 

  23. Saleem H et al (2016) Mechanical and thermal properties of thermoset-graphene nanocomposites. Macromol Mater Eng 301:231–259

    Article  CAS  Google Scholar 

  24. Lee J-Y, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133

    Article  Google Scholar 

  25. Lee JM, Sing SL, Yeong WY (2020) Bioprinting of multimaterials with computer-aided design/computer-aided manufacturing. Int J Bioprinting 6(1):245

    Article  CAS  Google Scholar 

  26. Fragassa C (2017) Marine applications of natural fibre-reinforced composites: a manufacturing case study. Adv Appl Ind Biomater, 21–47

  27. Potluri R, Krishna NC (2020) Potential and applications of green composites in industrial space. Mater Today: Proc 22:2041–2048

    CAS  Google Scholar 

  28. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477

    Article  CAS  Google Scholar 

  29. Job S (2010) Composite recycling—summary of recent research and development. Materials KTN Report, p 26

  30. Yang Y, Boom R, Irion B, Van Heerden D-J, Kuiper P, De Wit H (2012) Recycling of composite materials. Chem Eng Process 51:53–68

    Article  CAS  Google Scholar 

  31. La Rosa AD, Banatao DR, Pastine SJ, Latteri A, Cicala G (2016) Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Compos Part B: Eng 104:17–25

    Article  Google Scholar 

  32. Bhadra J, Al-Thani N, Abdulkareem A (2017) Recycling of polymer-polymer composites. In: Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Elsevier, pp 263–277

  33. Kennerley JR, Kelly RM, Fenwick NJ, Pickering SJ, Rudd CD (1998) The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process. Compos Part A: Appl Sci Manuf 29:839–845

    Article  Google Scholar 

  34. Maheshwari S, Deswal S (2017) Role of waste management at landfills in sustainable waste management. Int J Emerg Technol 8(1):324–328

    CAS  Google Scholar 

  35. Krishnan P (2022) Self-reinforced polymer composites: the science, engineering and technology. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  36. Nkwachukwu OI, Chima CH, Ikenna AO, Albert L (2013) Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. Int J Ind Chem 4:1–13

    Article  Google Scholar 

  37. Zhang H, Cui J, Hu G, Zhang B (2022) Recycling strategies for vitrimers. Int J Smart Nano Mater 13(3):367–390

    Article  Google Scholar 

  38. Denissen W, Winne JM, Du Prez FE (2016) Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 7(1):30–38

    Article  CAS  PubMed  Google Scholar 

  39. Montarnal D, Capelot M, Tournilhac F et al (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Matsumoto A (2001) Polymerization of multiallyl monomers. Prog Polym Sci 26(2):189–257

    Article  CAS  Google Scholar 

  41. Bîrcă A, Gherasim O, Grumezescu V, Grumezescu AM (2019) Introduction in thermoplastic and thermosetting polymers. In: Materials for biomedical engineering. Elsevier, pp 1–28

  42. Hay JN, O’Gara P (2006) Recent developments in thermoset curing methods. Proc Inst Mech Eng Part G: J Aerosp Eng 220(3):187–195

    Article  CAS  Google Scholar 

  43. Ratna D (2022) “Chapter 2—properties and processing of thermoset resin”, Recent advances and applications of thermoset resins, 2nd edn. Elsevier, Amsterdam, pp 173–292

    Book  Google Scholar 

  44. Voet V, Jager J, Folkersma R (2021) Plastics in the circular economy. In: Plastics in the circular economy. De Gruyter, Berlin

  45. Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M (2019) Degradation and recycling of films based on biodegradable polymers: a short review. Polymers 11(4):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia Q, Chen C, Yao Y, Li J, He S, Zhou Y, Hu L (2021) A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat Sustain 4(7):627–635

    Article  Google Scholar 

  47. Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395

    Article  CAS  Google Scholar 

  48. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12(5):1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim ID et al (2022) Need for sustainable packaging: an overview. Polymers 14(20):4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao X et al (2022) Plastic waste upcycling toward a circular economy. Chem Eng J 428:131928

    Article  CAS  Google Scholar 

  51. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2(4):24

    Article  Google Scholar 

  52. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643

    Article  CAS  PubMed  Google Scholar 

  53. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B: Biol Sci 364(1526):2115–2126

    Article  CAS  Google Scholar 

  54. Tall S, Karlsson S, Albertsson A-C (1998) Improvements in the properties of mechanically recycled thermoplastics. Polym Polym Compos 6(5):261–267

    CAS  Google Scholar 

  55. Uzosike CC, Yee LH, Padilla RV (2023) Small-scale mechanical recycling of solid thermoplastic wastes: a review of PET, PEs, and PP. Energies 16(3):1406

    Article  CAS  Google Scholar 

  56. Cholake ST, Rajarao R, Henderson P, Rajagopal RR, Sahajwalla V (2017) Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J Clean Prod 151:163–171

    Article  Google Scholar 

  57. da Cruz NF, Ferreira S, Cabral M, Simões P, Marques RC (2014) Packaging waste recycling in Europe: is the industry paying for it? Waste Manag 34(2):298–308

    Article  PubMed  Google Scholar 

  58. Psomopoulos CS, Bourka A, Themelis NJ (2009) Waste-to-energy: a review of the status and benefits in USA. Waste Manag 29(5):1718–1724

    Article  CAS  PubMed  Google Scholar 

  59. Porteous A (2001) Energy from waste incineration—a state of the art emissions review with an emphasis on public acceptability. Appl Energy 70(2):157–167

    Article  ADS  CAS  Google Scholar 

  60. Goodship V (2007) Plastic recycling. Sci Prog 90(4):245–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pegoretti A (2021) Towards sustainable structural composites: a review on the recycling of continuous-fiber-reinforced thermoplastics. Adv Ind Eng Polym Res 4(2):105–115

    CAS  Google Scholar 

  62. Chen T, Mansfield CD, Ju L, Baird DG (2020) The influence of mechanical recycling on the properties of thermotropic liquid crystalline polymer and long glass fiber reinforced polypropylene. Compos B Eng 200:108316

    Article  CAS  Google Scholar 

  63. Pietroluongo M, Padovano E, Frache A, Badini C (2020) Mechanical recycling of an end-of-life automotive composite component. Sustain Mater Technol 23:e00143

    CAS  Google Scholar 

  64. Åkesson D, Kuzhanthaivelu G, Bohlén M (2021) Effect of a small amount of thermoplastic starch blend on the mechanical recycling of conventional plastics. J Polym Environ 29:985–991

    Article  Google Scholar 

  65. Ghosh A (2021) Performance modifying techniques for recycled thermoplastics. Resour Conserv Recycl 175:105887

    Article  CAS  Google Scholar 

  66. Jagadeesh P et al (2022) Sustainable recycling technologies for thermoplastic polymers and their composites: a review of the state of the art. Polym Compos 43(9):5831–5862

    Article  CAS  Google Scholar 

  67. Chamas A et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8(9):3494–3511

    Article  CAS  Google Scholar 

  68. Akan OD et al (2021) Plastic waste: Status, degradation and microbial management options for Africa. J Environ Manag 292:112758

    Article  CAS  Google Scholar 

  69. Lee A, Liew MS (2021) Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. J Mater Cycles Waste Manag 23(1):32–43

    Article  Google Scholar 

  70. Kumar R, Singh R, Ahuja IPS, Hashmi MSJ (2020) Processing techniques of polymeric materials and their reinforced composites. Adv Mater Process Technol 6(3):591–607

    Google Scholar 

  71. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422

    Article  CAS  Google Scholar 

  72. Francis R (2016) Recycling of polymers: methods, characterization and applications. Wiley, New York

    Book  Google Scholar 

  73. Yue L, Bonab VS, Yuan D, Patel A, Karimkhani V, Manas-Zloczower I (2019) Vitrimerization: a novel concept to reprocess and recycle thermoset waste via dynamic chemistry. Global Chall 3(7):1800076

    Article  Google Scholar 

  74. Yu K, Taynton P, Zhang W, Dunn ML, Qi HJ (2014) Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Adv 4(20):10108–10117

    Article  ADS  CAS  Google Scholar 

  75. Zhang B, Li H, Yuan C, Dunn ML, Qi HJ, Yu K, Shi Q, Ge Q (2020) Influences of processing conditions on mechanical properties of recycled epoxy-anhydride vitrimers. J Appl Polym Sci 137(41):49246

    Article  CAS  Google Scholar 

  76. Li H, Zhang B, Yu K, Yuan C, Zhou C, Dunn ML, Qi HJ, Shi Q, Wei QH, Liu J, Ge Q (2020) Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers. Soft Matter 16(6):1668–1677

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Sasse F, Emig G (1998) Chemical recycling of polymer materials. Chem Eng Technol: Ind Chem-Plant Equip-Process Eng-Biotechnol 21(10):777–789

    Article  CAS  Google Scholar 

  79. Hamel CM, Kuang X, Qi HJ (2020) Modeling the dissolution of thermosetting polymers and composites via solvent assisted exchange reactions. Compos B Eng 200:108363

    Article  CAS  Google Scholar 

  80. Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    Article  CAS  PubMed  Google Scholar 

  81. Morici E, Dintcheva NT (2022) Recycling of thermoset materials and thermoset-based composites: challenge and opportunity. Polymers 14(19):4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen M, Cao H, Robertson ML (2020) Hydrolysis and solvolysis as benign routes for the end-of-life management of thermoset polymer waste. Annu Rev Chem Biomol Eng 11:183–201

    Article  CAS  PubMed  Google Scholar 

  83. Post W, Susa A, Blaauw R, Molenveld K, Knoop RJ (2020) A review on the potential and limitations of recyclable thermosets for structural applications. Polym Rev 60(2):359–388

    Article  CAS  Google Scholar 

  84. Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I (2023) Enzymes’ power for plastics degradation. Chem Rev 123(9):5612–5701

    Article  CAS  PubMed  Google Scholar 

  85. Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41(24):8603–8613

    Article  CAS  Google Scholar 

  86. Jin F-L, Park S-J (2015) Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review. Carbon Lett 16(2):67–77

    Article  Google Scholar 

  87. Utekar S, Suriya VK, More N, Rao A (2021) Comprehensive study of recycling of thermosetting polymer composites—driving force, challenges and methods. Compos B Eng 207:108596

    Article  CAS  Google Scholar 

  88. Pickering SJ, Kelly RM, Kennerley JR, Rudd CD, Fenwick NJ (2000) A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Compos Sci Technol 60(4):509–523

    Article  CAS  Google Scholar 

  89. Torres A et al (2000) Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel 79(8):897–902

    Article  CAS  Google Scholar 

  90. Ginder RS, Ozcan S (2019) Recycling of commercial E-glass reinforced thermoset composites via two temperature step pyrolysis to improve recovered fiber tensile strength and failure strain. Recycling 4(2):24

    Article  Google Scholar 

  91. Haider MM, Nassiri S, Englund K, Li H, Chen Z (2021) Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar. Transp Res Rec 2675(10):1254–1267

    Article  Google Scholar 

  92. Shuaib NA, Mativenga PT (2016) Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. J Clean Prod 120:198–206

    Article  CAS  Google Scholar 

  93. Rahimizadeh A, Kalman J, Henri R, Fayazbakhsh K, Lessard L (2019) Recycled glass fiber composites from wind turbine waste for 3D printing feedstock: effects of fiber content and interface on mechanical performance. Materials 12(23):3929

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xia G et al (2021) Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid. J Environ Chem Eng 9(5):106182

    Article  CAS  Google Scholar 

  95. Okajima I, Hiramatsu M, Shimamura Y, Awaya T, Sako T (2014) Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J Supercrit Fluids 91:68–76

    Article  CAS  Google Scholar 

  96. Yu H, Potter KD, Wisnom MR (2014) A novel manufacturing method for aligned discontinuous fibre composites (High Performance-Discontinuous Fibre method). Compos A Appl Sci Manuf 65:175–185

    Article  CAS  Google Scholar 

  97. Ning H, Lu N, Hassen AA, Chawla K, Selim M, Pillay S (2020) A review of long fibre thermoplastic (LFT) composites. Int Mater Rev 65(3):164–188

    Article  CAS  Google Scholar 

  98. Hong M, Chen EY-X (2019) Future directions for sustainable polymers. Trends Chem 1(2):148–151

    Article  CAS  Google Scholar 

  99. Getzler YDYL, Mathers RT (2022) Sustainable polymers: our evolving understanding. Acc Chem Res 55(14):1869–1878

    Article  CAS  PubMed  Google Scholar 

  100. Lu X-B, Liu Y, Zhou H (2018) Learning nature: recyclable monomers and polymers. Chem Eur J 24(44):11255–11266

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Miller SA (2014) Sustainable polymers: replacing polymers derived from fossil fuels. Polym Chem 5(9):3117–3118

    Article  CAS  Google Scholar 

  102. Talon O (2014) In: Hamaide T, Deterre R, Feller J-F (eds) Environmental impact of polymers, Ch. 6. Wiley, New York, pp 91–107

  103. Tarazona NA, Machatschek R, Balcucho J, Castro-Mayorga JL, Saldarriaga JF, Lendlein A (2022) Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS Energy Sustain 9(1):28–34

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  104. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540(7633):354–362

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of Plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rahman MH, Bhoi PR (2021) An overview of non-biodegradable bioplastics. J Clean Prod 294:126218

    Article  CAS  Google Scholar 

  107. Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9:523

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kurian T, Mathew NM (2011) Natural rubber: production, properties and applications. Biopolym: Biomed Environ Appl, pp 403–436

  109. Candido RG, Godoy GG, Gonçalves AR (2017) Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr Polym 167:280–289

    Article  CAS  PubMed  Google Scholar 

  110. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s ‘Top 10’ revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  111. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9:435–455

    Article  CAS  Google Scholar 

  112. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  PubMed  Google Scholar 

  113. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  114. Moran CS, Barthelon A, Pearsall A, Mittal V, Dorgan JR (2016) Biorenewable blends of polyamide-4,10 and polyamide-6,10. J Appl Polym Sci 133(45)

  115. Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

    Article  PubMed  PubMed Central  Google Scholar 

  116. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37(17):1391–1413

    Article  CAS  PubMed  Google Scholar 

  117. Zhang C, Show P-L, Ho S-H (2019) Progress and perspective on algal plastics—a critical review. Biores Technol 289:121700

    Article  CAS  Google Scholar 

  118. Rahman A, Miller CD (2017) Chapter 6—Microalgae as a source of bioplastics. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry. Elsevier, Amsterdam, pp 121–138

    Chapter  Google Scholar 

  119. Kartik A et al (2021) A critical review on production of biopolymers from algae biomass and their applications. Bioresour Technol 329:124868

    Article  CAS  PubMed  Google Scholar 

  120. Zeller MA, Hunt R, Jones A, Sharma S (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J Appl Polym Sci 130(5):3263–3275

    Article  CAS  Google Scholar 

  121. Pattanasupong A, Tungsatitporn S, Meeploy S, Wangdeetham R (2012) Bioplastic sheet production from 1, 3-Propanediol produced by raw glycerol fermentation. Asia-Pacific J Sci Technol 17(6):958–964

    Google Scholar 

  122. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. Utrecht University, Utrecht

    Google Scholar 

  123. Yu J et al (2023) PLA bioplastic production: from monomer to the polymer. Eur Polym J 193:112076. https://doi.org/10.1016/j.eurpolymj.2023.112076

    Article  CAS  Google Scholar 

  124. Thakur S, Chaudhary J, Singh P, Alsanie WF, Grammatikos SA, Thakur VK (2022) Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresour Technol 344:126156. https://doi.org/10.1016/j.biortech.2021.126156

    Article  CAS  PubMed  Google Scholar 

  125. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  126. Zhang H, Li H, Wang A, Xu C, Yang S (2020) Progress of catalytic valorization of bio-glycerol with urea into glycerol carbonate as a monomer for polymeric materials. Adv Polym Technol 2020:17

    Article  Google Scholar 

  127. Hwang DK et al (2023) Exploring the potential of 2,5-furandicarboxylic acid-based bioplastics: properties, synthesis, and applications. Polym Degrad Stab 218:110539. https://doi.org/10.1016/j.polymdegradstab.2023.110539

    Article  CAS  Google Scholar 

  128. Polunin Y, Kirianchuk V, Mhesn N, Wei L, Minko S, Luzinov I, Voronov A (2023) Tough bioplastics from babassu oil-based acrylic monomer, hemicellulose xylan, and carnauba wax. Int J Mol Sci 24:6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matt L, Parve J, Parve O, Pehk T, Pham TH, Liblikas I, Vares L, Jannasch P (2018) Enzymatic synthesis and polymerization of isosorbide-based monomethacrylates for High-Tg Plastics. ACS Sustain Chem Eng 6(12):17382–17390. https://doi.org/10.1021/acssuschemeng.8b05074

    Article  CAS  Google Scholar 

  130. Dianursanti D, Noviasari C, Windiani L, Gozan M (2019) Effect of compatibilizer addition in Spirulina platensis based bioplastic production. AIP Conf Proc 2092(1):30012. https://doi.org/10.1063/1.5096716

    Article  CAS  Google Scholar 

  131. Bumbac M, Nicolescu CM, Olteanu RL, Gherghinoiu SC, Bumbac C, Tiron O, Manea EE, Radulescu C, Gorghiu LM, Stanescu SG, Serban BC (2023) Preparation and characterization of microalgae styrene-butadiene composites using chlorella vulgaris and Arthrospira platensis biomass. Polymers 15:1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Das SK, Sathish A, Stanley J (2018) Production of biofuel and bioplastic from Chlorella pyrenoidosa. Mater Today Proc 5(8):16774–16781. https://doi.org/10.1016/j.matpr.2018.06.020

    Article  CAS  Google Scholar 

  133. Khalis SA (2018) The effect of compatibilizer addition on Chlorella vulgaris microalgae utilization as a mixture for bioplastic. E3S Web Conf 67:2–6. https://doi.org/10.1051/e3sconf/20186703047

    Article  CAS  Google Scholar 

  134. Hempel F et al (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10(1):81. https://doi.org/10.1186/1475-2859-10-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Abe MM, Branciforti MC, Nallin Montagnolli R, Marin Morales MA, Jacobus AP, Brienzo M (2022) Production and assessment of the biodegradation and ecotoxicity of xylan- and starch-based bioplastics. Chemosphere 287:132290. https://doi.org/10.1016/j.chemosphere.2021.132290

    Article  CAS  PubMed  Google Scholar 

  136. Umar Y (2019) IOP Conference Series: Earth and environmental science biodegradability of oil palm cellulose-based bioplastics related content

  137. Kalita NK, Damare NA, Hazarika D, Bhagabati P, Kalamdhad A, Katiyar V (2021) Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ Chall 3:100067. https://doi.org/10.1016/j.envc.2021.100067

    Article  CAS  Google Scholar 

  138. A. P. and D. of P.-B. C. in T. E. Cinelli, P.; Seggiani, M.; Mallegni, N.; Gigante, V.; Lazzeri.

  139. Cinelli P, Seggiani M, Mallegni N, Gigante V, Lazzeri A (2019) Processability and degradability of PHA-based composites in terrestrial environments. Int J Mol Sci 20(2):284 https://doi.org/10.3390/ijms20020284

    Article  PubMed  PubMed Central  Google Scholar 

  140. Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, AbdulGhani A (2022) Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Curr Res Green Sustain Chem 5:1

    Article  Google Scholar 

  141. Di Bartolo A, Infurna G, Dintcheva NT (2021) A review of bioplastics and their adoption in the circular economy. Polymers 13(8):1229

    Article  PubMed  PubMed Central  Google Scholar 

  142. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38(12):3484–3504

    Article  CAS  PubMed  Google Scholar 

  143. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5(11):1149–1163

    Article  CAS  PubMed  Google Scholar 

  144. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632

    Article  CAS  PubMed  Google Scholar 

  145. Weiss M et al (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 16(s1):S169–S181

    Article  CAS  Google Scholar 

  146. Eerhart AJJE, Faaij APC, Patel MK (2012) Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 5(4):6407–6422

    Article  CAS  Google Scholar 

  147. Gandini A, Lacerda TM (2021) Monomers and macromolecular materials from renewable resources: state of the art and perspectives. Molecules 27(1):159

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cioica N, Cona C, Nagy M, Fodorean G (2008) Plastics made from renewable sources–potential and perspectives for the environment and agriculture of the third millennium. Bull Univ Agric Sci Vet Med 6

  149. Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22(11):611–617

    Article  CAS  Google Scholar 

  150. Rosenboom J-G, Langer R, Traverso G (2022) Bioplastics for a circular economy. Nat Rev Mater 7(2):117–137

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  151. Arikan EB, Ozsoy HD (2015) Investigation of bioplastics. J Civ Eng 9:188–192

    Google Scholar 

  152. Jan-Georg R, Langer R, Giovanni T (2022) Bioplastics for a circular economy. Nat Rev Mater 7(2):117–137

    Article  ADS  Google Scholar 

  153. Chinthapalli R et al (2019) Biobased building blocks and polymers—global capacities, production and trends, 2018–2023. Ind Biotechnol 15(4):237–241

    Article  Google Scholar 

  154. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6(3):246–256

    Article  CAS  Google Scholar 

  155. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  156. Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104(6):406–411

    Article  CAS  PubMed  Google Scholar 

  157. Lee JW, Kim HU, Choi S, Yi J, Lee SY (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22(6):758–767

    Article  CAS  PubMed  Google Scholar 

  158. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72

    Article  PubMed  Google Scholar 

  159. Mohan SV, Modestra JA, Amulya K, Butti SK, Velvizhi G (2016) A circular bioeconomy with biobased products from CO2 sequestration. TRENDS Biotechnol 34(6):506–519

    Article  Google Scholar 

  160. Thomas SM, DiCosimo R, Nagarajan V (2002) Biocatalysis: applications and potentials for the chemical industry. TRENDS Biotechnol 20(6):238–242

    Article  CAS  PubMed  Google Scholar 

  161. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23(1):47–56

    Article  Google Scholar 

  162. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  163. Nguyen HTH, Qi P, Rostagno M, Feteha A, Miller SA (2018) The quest for high glass transition temperature bioplastics. J Mater Chem A 6(20):9298–9331

    Article  CAS  Google Scholar 

  164. Yu X et al (2018) Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters. Nat Commun 9(1):2880

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  165. Nguyen HTH, Short GN, Qi P, Miller SA (2017) Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation. Green Chem 19(8):1877–1888

    Article  CAS  Google Scholar 

  166. Nguyen HD, Kaneko T, Takaya N, Fujita T, Ito T (2016) Fermentation of aromatic lactate monomer and its polymerization to produce highly thermoresistant bioplastics. Polym J 48(1):81–89

    Article  CAS  Google Scholar 

  167. Jafari SH, Yavari A, Asadinezhad A, Khonakdar HA, Böhme F (2005) Correlation of morphology and rheological response of interfacially modified PTT/m-LLDPE blends with varying extent of modification. Polymer 46(14):5082–5093

    Article  CAS  Google Scholar 

  168. Prashantha K, Soulestin J, Lacrampe M-F, Krawczak P (2009) Present status and key challenges of carbon nanotubes reinforced polyolefins: a review on nanocomposites manufacturing and performance issues. Polym Polym Compos 17(4):205–245

    CAS  Google Scholar 

  169. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly (ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667

    Article  CAS  Google Scholar 

  170. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–polylactide: a critique. Eur Polym J 43(10):4053–4074

    Article  CAS  Google Scholar 

  171. Ramesh M, Palanikumar K, Reddy KH (2013) Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Compos B Eng 48:1–9

    Article  CAS  Google Scholar 

  172. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109(11):5288–5353

    Article  CAS  PubMed  Google Scholar 

  173. Mokhena TC, Mochane MJ, Motaung TE, Linganiso LZ, Thekisoe OM, Songca SP (2018) Sugarcane bagasse and cellulose polymer composites. Sugarcane-Technol Res 16:225–240

    Google Scholar 

  174. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174

    Article  Google Scholar 

  175. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  176. Anju S, Prajitha N, Sukanya VS, Mohanan PV (2020) Complicity of degradable polymers in health-care applications. Mater Today Chem 16:100236

    Article  CAS  Google Scholar 

  177. Lewandowski M, Pawłowska U (2016) Part I. Degradation of elastomers and prediction of lifetime. Elastomery 20:24–30

    Google Scholar 

  178. Ashter S (2016) Mechanisms of polymer degradation, 31–59.

  179. Kazemi M, Kabir SF, Fini EH (2021) State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour Conserv Recycl 174:105776

    Article  CAS  Google Scholar 

  180. Plota A, Masek A (2020) Lifetime prediction methods for degradable polymeric materials—a short review. Materials 13(20):4507

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sánchez AC, Collinson SR (2011) The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. Eur Polym J 47(10):1970–1976

    Article  Google Scholar 

  182. Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1(6):0046

    Article  Google Scholar 

  183. Hong M, Chen EY-X (2016) Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat Chem 8(1):42–49

    Article  CAS  PubMed  Google Scholar 

  184. Tang X, Chen EY-X (2019) Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 5(2):284–312

    Article  CAS  Google Scholar 

  185. Otsuka H, Endo T (1999) Poly(hemiacetal ester)s: new class of polymers with thermally dissociative units in the main chain. Macromolecules 32(26):9059–9061

    Article  ADS  CAS  Google Scholar 

  186. Jesus SP, Meireles MAA (2014) Supercritical fluid extraction: a global perspective of the fundamental concepts of this eco-friendly extraction technique. In: Alternative solvents for natural products extraction. Berlin, pp 39–72

  187. Nkosi N, Muzenda E, Gorimbo J, Belaid M (2021) Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction. RSC Adv 11(20):11844–11871

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hunt EJ, Zhang C, Anzalone N, Pearce JM (2015) Polymer recycling codes for distributed manufacturing with 3-D printers. Resour Conserv Recycl 97:24–30

    Article  Google Scholar 

  189. Osanai Y, Toshima K, Matsumura S (2006) Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci Technol Adv Mater 7:202–208

    Article  CAS  Google Scholar 

  190. Kasuya K, Ohura T, Masuda K, Doi Y (1999) Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int J Biol Macromol 24(4):329–336

    Article  CAS  PubMed  Google Scholar 

  191. Ignatyev IA, Thielemans W, Vander Beke B (2014) Recycling of polymers: a review. Chemsuschem 7(6):1579–1593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their insightful comments.

Funding

The authors received no financial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharan Chandran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolluru, S., Thakur, A., Tamakuwala, D. et al. Sustainable recycling of polymers: a comprehensive review. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05195-z

Keywords

Navigation