Skip to main content

Advertisement

Log in

Advancements in polymer nanocomposite manufacturing: revolutionizing medical breakthroughs via additive manufacturing

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

3D printing technology has revolutionized product development in numerous industries. Due to 3D printing, innovative ways of directly giving drugs to patients, anatomical models for surgical planning and training, and tailored prosthetics and other medical equipment are all within the realm of possibility in the medical industry. 3D printing in healthcare has sparked a paradigm shift in creating medical implants and prosthetics. As a result of their exceptional mechanical, thermal, electrical, and optical qualities, polymers and composites made of them have gained widespread use in the medical industry. In this review article, we look at the most recent and cutting-edge benefits of 3D printing technology to create medical products out of polymers and composites. This article summarizes recent findings in patient-specific medical device and prosthesis design and manufacture and anatomical model development for surgical training and planning. Various 3D printing techniques, i.e., stereolithography, fused deposition modeling, and selective laser sintering methods, were examined, along with the pros and cons. Finally, we discuss the importance of 3D printing, which could significantly alter how medical devices are designed and produced, enhancing healthcare services and improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gordon R (2015) Trends in commercial 3D printing and additive manufacturing. 3D Print Addit Manuf 2:89–90. https://doi.org/10.1089/3dp.2015.28999.rgo

    Article  Google Scholar 

  2. Kumar SA, Prasad RVS (2021) Basic principles of additive manufacturing: different additive manufacturing technologies. In: Additive manufacturing. Elsevier, Amsterdam, pp 17–35

  3. Abegaz ST (2018) Marching for 3D printing: its potential to promoting access to healthcare in Africa. In: Reflections on bioethics. InTech

  4. Jafferson JM, Chatterjee D (2021) A review on polymeric materials in additive manufacturing. Mater Today: Proc 46:1349–1365. https://doi.org/10.1016/j.matpr.2021.02.485

    Article  CAS  Google Scholar 

  5. Frumar M, Frumarova B, Wagner T, Hrdlicka M (2007) Phase change memory materials–composition, structure, and properties. J Mater Sci: Mater Electron 18:169–174. https://doi.org/10.1007/s10854-007-9187-7

    Article  CAS  Google Scholar 

  6. Supic O (1991) Change of structure and chemical composition of AlZn5Mg3Cu1.5 alloy during the process of anodizing in sulphuric acid. Key Eng Mater 20–28:1445–1456. https://doi.org/10.4028/www.scientific.net/kem.20-28.1445

    Article  Google Scholar 

  7. Purohit H (2023) The effects of vestibular implants and other existing treatment options of individuals with bilateral vestibular hypofunction: a review. J Long Term Eff Med Implants 33:31–42. https://doi.org/10.1615/jlongtermeffmedimplants.2022040056

    Article  PubMed  Google Scholar 

  8. Mokhtar A, Hamed T, El-Sholkamy M (2023) Evaluation of immediate loading mini-implant versus traditional implant (clinical and radiographic study). Dent Sci Updates 4:243–251. https://doi.org/10.21608/dsu.2023.158093.1141

    Article  Google Scholar 

  9. Richards DW, Kao RT (2008) Strategic extraction: comparison of traditional and implant therapies. J Calif Dent Assoc 36:181–186. https://doi.org/10.1080/19424396.2008.12221479

    Article  PubMed  Google Scholar 

  10. Baudis S, Office E (2021) 3D-printing—bone replacement implants. Morressier

  11. Lekurwale S, Karanwad T, Banerjee S (2022) Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser. Ann 3D Print Med 6:100054. https://doi.org/10.1016/j.stlm.2022.100054

    Article  Google Scholar 

  12. Katsarov S, Georgiev D (2020) Clinical assessment of plaque accumulation capacity of 3D printed temporary screw retained crowns, compared to resin and composite based temporary screw retained crowns on single implants. Clin Oral Implant Res 31:219–219. https://doi.org/10.1111/clr.160_13644

    Article  Google Scholar 

  13. Yusop AH, Hermawan H (2013) Synthesis and development of polymers-infiltrated porous iron for temporary medical implants: a preliminary result. Adv Mater Res 686:331–335. https://doi.org/10.4028/www.scientific.net/amr.686.331

    Article  Google Scholar 

  14. Betancourt MC, Araújo C, Marín S, Buriticá W (2023) The quantitative impact of using 3D printed anatomical models for surgical planning optimization: literature review. 3D Print Add Manuf 10:1130–1139. https://doi.org/10.1089/3dp.2021.0188

    Article  Google Scholar 

  15. Paxton NC (2023) Navigating the intersection of 3D printing, software regulation and quality control for point-of-care manufacturing of personalized anatomical models. 3D Print Med. https://doi.org/10.1186/s41205-023-00175-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kiński W, Pietkiewicz P (2020) Influence of the printing nozzle diameter on tensile strength of produced 3D models in FDM technology. Agric Eng 24:31–38. https://doi.org/10.1515/agriceng-2020-0024

    Article  Google Scholar 

  17. Horvath J, Cameron R (2020) Prototyping and 3D visualization. Mastering 3D printing. Apress, Berkeley, pp 289–296

    Chapter  Google Scholar 

  18. Abraham TW, Höfer R (2012) Lipid-based polymer building blocks and polymers. In: polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 15–58

  19. Bohra H, Wang M (2019) Direct arylation polymerization for synthesizing a library of conjugated porous polymers containing thiophene-flanked building blocks. ACS Appl Polym Mater 1:1697–1706. https://doi.org/10.1021/acsapm.9b00271

    Article  CAS  Google Scholar 

  20. Zhang R, Gao R, Gou Q et al (2022) Precipitation polymerization: a powerful tool for preparation of uniform polymer particles. Polymers 14:1851. https://doi.org/10.3390/polym14091851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fein K, Bousfield DW, Gramlich WM (2020) Thiol-norbornene reactions to improve natural rubber dispersion in cellulose nanofiber coatings. Carbohyd Polym 250:117001. https://doi.org/10.1016/j.carbpol.2020.117001

    Article  CAS  Google Scholar 

  22. Kimble LD, Bhattacharyya D (2014) In VitroDegradation effects on strength, stiffness, and creep of PLLA/PBS: a potential stent material. Int J Polym Mater Polym Biomater 64:299–310. https://doi.org/10.1080/00914037.2014.945203

    Article  CAS  Google Scholar 

  23. Shu W, Stanciulescu I (2020) Shear-lag analysis of capped carbon nanotube reinforced composites with interface damage. Compos Struct 242:112107. https://doi.org/10.1016/j.compstruct.2020.112107

    Article  Google Scholar 

  24. Yaping W, Yuanlin Z, Yuanming L, Weideng P (2002) Analysis of shear lag and shear deformation effects in laminated composite box beams under bending loads. Compos Struct 55:147–156. https://doi.org/10.1016/s0263-8223(01)00138-6

    Article  Google Scholar 

  25. Khan SB, Li N, Chem S et al (2023) Influence of nanoparticle size on the mechanical and tribological characteristics of TiO2 reinforced epoxy composites. J Mark Res 26:6001–6015. https://doi.org/10.1016/j.jmrt.2023.09.002

    Article  CAS  Google Scholar 

  26. Suresha B, Chandramohan G, Sadananda Rao PR et al (2007) Influence of SiC filler on mechanical and tribological behavior of glass fabric reinforced epoxy composite systems. J Reinf Plast Compos 26:565–578. https://doi.org/10.1177/0731684407075533

    Article  CAS  Google Scholar 

  27. Hyun J-M, Lee J-R (2023) Electromagnetic characteristics of 3D-printed composites by free-space measurement. Elsevier, Amsterdam

    Google Scholar 

  28. Verma P, Ubaid J, Alam F et al (2023) Multifunctional characteristics of 3D printed polymer nanocomposites under monotonic and cyclic compression. Def Technol 30:13–22. https://doi.org/10.1016/j.dt.2023.05.017

    Article  Google Scholar 

  29. Russi L, Del Gaudio C (2021) 3D printed multicompartmental capsules for a progressive drug release. Ann Printed Med 3:100026. https://doi.org/10.1016/j.stlm.2021.100026

    Article  Google Scholar 

  30. Khan SB, Li N, Liang J et al (2023) The effect of absorbed solvent on the flexural characteristics of 3D-printed photosensitive polymers. Mech Time-Depend Mater 27:687–704. https://doi.org/10.1007/s11043-022-09586-5

    Article  ADS  CAS  Google Scholar 

  31. Garner G Programming Printers Printed by 3D Printers. In: 2013 ASEE annual conference & exposition proceedings. ASEE conferences

  32. Li J, Xia YC (2009) The reinforcement effect of carbon fiber on the friction and wear properties of carbon fiber reinforced PA6 composites. Fibers Polym 10:519–525. https://doi.org/10.1007/s12221-009-0519-5

    Article  CAS  Google Scholar 

  33. Taş H, Soykok IF (2021) Investigation of the low velocity impact behaviour of shear thickening fluid impregnated kevlar, hybrid (kevlar/carbon) and carbon fabrics. Fibers nd Polym 22:2626–2634. https://doi.org/10.1007/s12221-021-1358-2

    Article  CAS  Google Scholar 

  34. Vyas A, Garg V, Ghosh SB, Bandyopadhyay-Ghosh S (2022) Photopolymerizable resin-based 3D printed biomedical composites: factors affecting resin viscosity. Mater Today: Proc 62:1435–1439. https://doi.org/10.1016/j.matpr.2022.01.172

    Article  CAS  Google Scholar 

  35. Izdebska-Podsiadły J (2022) Application of 3D printing. In: Polymers for 3D printing. Elsevier, Amsterdam, pp 51–62

  36. Uricar J, Minar J (2021) Stereolithography resins with conductive fillers: an effective way to enhance their electrical properties. In: 2021 44th international spring seminar on electronics technology (ISSE). IEE

  37. Sola A, Trinchi A (2023) Production of composite filaments for fused deposition modeling. In: Fused deposition modeling of composite materials. Elsevier, Amsterdam, pp 89–108

  38. Zegardło B (2022) Heat-resistant concretes containing waste carbon fibers from the sailing industry and recycled ceramic aggregates. Case Stud Construct Mater 16:e01084. https://doi.org/10.1016/j.cscm.2022.e01084

    Article  Google Scholar 

  39. Du Plessis A (2021) Porosity in laser powder bed fusion. In: Fundamentals of laser powder bed fusion of metals. Elsevier, Amsterdam, pp 155–178

  40. Rostamzad H (2022) Active and intelligent biodegradable films and polymers. In: Biodegradable polymers, blends and composites. Elsevier, Amsterdam, pp 415–430

  41. Pokrowiecki R (2018) The paradigm shift for drug delivery systems for oral and maxillofacial implants. Drug Deliv 25:1504–1515. https://doi.org/10.1080/10717544.2018.1477855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roldo M, Fatouros DG (2011) Chitosan-derivative based hydrogels as drug delivery platforms: applications in drug delivery and tissue engineering. In: Active implants and scaffolds for tissue regeneration. Springer, Berlin, pp 351–376

  43. Hospodiuk M, Moncal KK, Dey M, Ozbolat IT (2018) Extrusion-based biofabrication in tissue engineering and regenerative medicine. In: 3D printing and biofabrication. Springer, Cham, pp 255–281

  44. Clarissa WH-Y, Chia CH, Zakaria S, Evyan YC-Y (2021) Recent advancement in 3-D printing: nanocomposites with added functionality. Progr Addit Manuf 7:325–350. https://doi.org/10.1007/s40964-021-00232-z

    Article  Google Scholar 

  45. Spinelli G, Guarini R, Kotsilkova R et al (2023) Experimental, theoretical and numerical studies on thermal properties of lightweight 3D printed graphene-based discs with designed Ad Hoc air cavities. Nanomaterials 13:1863. https://doi.org/10.3390/nano13121863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vence J, Gil C, González-Rodríguez L, López-Álvarez M (2023) Thermal behavior of graphene oxide deposited on 3D-printed polylactic acid for photothermal therapy: an experimental-numerical analysis. J Funct Biomater 14:80. https://doi.org/10.3390/jfb14020080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan SB, Li N, Liang J et al (2022) Influence of exposure period and angle alteration on the flexural resilience and mechanical attributes of photosensitive resin. Nanomaterials 12:2566. https://doi.org/10.3390/nano12152566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Gong H, Wei W et al (2022) Vat photopolymerization of low-titanium lunar regolith simulant for optimal mechanical performance. Ceram Int 48:29752–29762. https://doi.org/10.1016/j.ceramint.2022.06.235

    Article  CAS  Google Scholar 

  49. Shen X, Naguib HE (2019) A robust ink deposition system for binder jetting and material jetting. Addit Manuf 29:100820. https://doi.org/10.1016/j.addma.2019.100820

    Article  Google Scholar 

  50. Molotnikov A, Kingsbury A, Brandt M (2021) Current state and future trends in laser powder bed fusion technology. In: Fundamentals of laser powder bed fusion of metals. Elsevier, Amsterdam, pp 621–634

  51. Liu L (2016) Investigation of interfacial interactions between nanofillers and polymer matrices using a variety of techniques. In: Interface/interphase in polymer nanocomposites, pp 253–282. https://doi.org/10.1002/9781119185093.ch7

  52. Xiang Z, Gupta B, Q. Le M et al (2018) Hysteresis model of 3D printed magnetic particles based polymer composite materials. In: 2018 IEEE international magnetics conference (INTERMAG). IEEE

  53. Khan SB, Lee S-L (2021) Supramolecular chemistry: host-guest molecular complexes. Molecules 26:3995. https://doi.org/10.3390/molecules26133995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song M, Zhao Q, Wang X et al (2022) A hydrophilic/hydrophobic janus membrane used as wound dressings with enhanced antibacterial properties. Fibers Polym 23:2511–2516. https://doi.org/10.1007/s12221-022-0127-1

    Article  CAS  Google Scholar 

  55. Peng Q, Gong B, Parsons GN (2011) Making inert polypropylene fibers chemically responsive by combining atomic layer deposition and vapor phase chemical grafting. Nanotechnology 22:155601. https://doi.org/10.1088/0957-4484/22/15/155601

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Horiuchi S (2023) Interfacial phenomena in adhesion and adhesive bonding investigated by electron microscopy. In: Interfacial phenomena in adhesion and adhesive bonding. Springer, Singapore, pp 113–207

  57. Zhou H, Li Z, Jiang S (2023) Effect of gas temperature on the interfacial bonding of cold-spray additive-manufactured Ti6al4v. Elsevier, Amsterdam

    Book  Google Scholar 

  58. Tagliaferri V, Trovalusci F, Guarino S, Venettacci S (2019) Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12:4161. https://doi.org/10.3390/ma12244161

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Joshi S, Martukanitz RP, Nassar AR, Michaleris P (2023) Metal additive manufacturing processes—jetting- and extrusion-based processes. In: Additive manufacturing with metals. Springer, Cham, pp 151–193

  60. Shin S, Park S, Park M et al (2017) Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives. BioResources 12:1. https://doi.org/10.15376/biores.12.2.2941-2954

    Article  CAS  Google Scholar 

  61. Kilic U, Ma J, Baharlou E, Ozbulut OE (2023) Effects of viscosity modifying admixture and nanoclay on fresh and rheo-viscoelastic properties and printability characteristics of cementitious composites. J Build Eng 70:106355. https://doi.org/10.1016/j.jobe.2023.106355

    Article  Google Scholar 

  62. Tanaka H, Hirate M, Watanabe S, Kuroda S (2013) Microscopic signature of metallic state in semicrystalline conjugated polymers doped with fluoroalkylsilane molecules. Adv Mater 26(15):2376–2383. https://doi.org/10.1002/adma.201304691

    Article  CAS  PubMed  Google Scholar 

  63. Hergenrother P (1988) New semicrystalline polyimide high temperature adhesive. Mater Process Rep 3:7–7. https://doi.org/10.1080/08871949.1988.11752170

    Article  Google Scholar 

  64. Takase A, Ishimoto T, Morita N et al (2021) Comparison of phase characteristics and residual stresses in Ti–6Al–4V alloy manufactured by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques. Crystals 11:796. https://doi.org/10.3390/cryst11070796

    Article  CAS  Google Scholar 

  65. Deshmukh S (2016) Prediction of melt rheology of amorphous polymers for hot melt extrusion. Morressier

  66. Nollenberger K, Albers J (2012) Applications of poly(meth)acrylate polymers in melt extrusion. Hot-Melt Extrus: Pharmaceut Appl. https://doi.org/10.1002/9780470711415.ch6

    Article  Google Scholar 

  67. Madaleno L, Schjødt-Thomsen J, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+melt compounding. Compos Sci Technol 70:804–814. https://doi.org/10.1016/j.compscitech.2010.01.016

    Article  CAS  Google Scholar 

  68. Higaino T, Aoyama T, Ogawa H (2015) 0501 End milling of CF/PEEK under cryogenic conditions: effects of liquefied carbon dioxide and liquefied nitrogen. In: Proceedings of international conference on leading edge manufacturing in 21st century: LEM21 2015.8:1. https://doi.org/10.1299/jsmelem.2015.8._0501–1

  69. Lin G-P, Lin L, Wang X-L et al (2015) PBT/PC blends compatibilized and toughened via copolymers in situ formed by MgO-catalyzed transesterification. Ind Eng Chem Res 54:1282–1291. https://doi.org/10.1021/ie504032w

    Article  CAS  Google Scholar 

  70. Schaefer JR, Rasmussen DH, Partch R (2013) Freeze drying of aluminum nanoflakes from cyclohexane suspensions. Dry Technol 31:856–863. https://doi.org/10.1080/07373937.2013.769112

    Article  CAS  Google Scholar 

  71. Takaku Y, Kobayashi Y (2004) Ishikawa K (2004) Creep behavior of polymers(PEEK, PEI and POM) near the glass transition temperature. Proc Mater Process Conf 12:141–142. https://doi.org/10.1299/jsmemp.2004.12.141

    Article  Google Scholar 

  72. Lisachuk GV, Kryvobok RV, Fedorenko EY, Zakharov AV (2015) Ceramic radiotransparent materials on the basis of BaO–Al2O3–SiO2 and SrO–Al2O3–SiO2 systems. Epitoanyag. J Silic Based Compos Mater 67:20–23. https://doi.org/10.14382/epitoanyag-jsbcm.2015.4

    Article  Google Scholar 

  73. Danyliuk OM, Atamaniuk VM, Hnativ ZYA (2018) The influence of mixing solid particles on the kinetic of benzoic acid dissociation during the pneumatic mixing of solution. Sci Bull UNFU 28:92–96. https://doi.org/10.15421/40280720

    Article  Google Scholar 

  74. Jin T, Zhao Z, Chen K (2015) Preparation of a poly(vinyl chloride) ultrafiltration membrane through the combination of thermally induced phase separation and non-solvent-induced phase separation. J Appl Polym Sci. https://doi.org/10.1002/app.42953

    Article  Google Scholar 

  75. Pui LP, Lejaniya AKS (2022) Effects of spray-drying parameters on physicochemical properties of powdered fruits. Foods Raw Mater. https://doi.org/10.21603/2308-4057-2022-2-533

    Article  Google Scholar 

  76. Kuźmińska A, Butruk-Raszeja BA, Stefanowska A, Ciach T (2020) Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids Surf B 192:111066. https://doi.org/10.1016/j.colsurfb.2020.111066

    Article  CAS  Google Scholar 

  77. Sato A, Nishikawa I, Iyota M (2017) The effects of temperature during post-heating treatment on residual stress of resistance spot welded high-strength steel sheets. Q J Jpn Weld Soc 35:66s–70s. https://doi.org/10.2207/qjjws.35.66s

    Article  Google Scholar 

  78. Lin K, Shieh Y (1998) Core-shell particles designed for toughening the epoxy resins. II. Core-shell-particle-toughened epoxy resins. J Appl Polym Sci 70:2313–2322. https://doi.org/10.1002/(sici)1097-4628(19981219)70:12%3c2313::aid-app2%3e3.3.co;2-g

    Article  CAS  Google Scholar 

  79. Shinde VV, Celestine A-D, Beckingham LE, Beckingham BS (2020) Stereolithography 3D printing of microcapsule catalyst-based self-healing composites. ACS Appl Polym Mater 2:5048–5057. https://doi.org/10.1021/acsapm.0c00872

    Article  CAS  Google Scholar 

  80. Chen Q, Hu Z, Zhang X, Liu D, Li F, Lai G (2018) The development of SLA (stereolithography) and DLP (digital light processing) technology in China. Adv Theor Comput Phys. https://doi.org/10.33140/atcp/01/01/00002

    Article  Google Scholar 

  81. Corbel S, Dufaud O, Roques-Carmes T (2011) Materials for stereolithography. In: Stereolithography. Springer, Boston, MA, pp 141–159

  82. Field J, Haycock JW, Boissonade FM, Claeyssens F (2021) A tuneable, photocurable, poly(caprolactone)-based resin for tissue engineering—synthesis. Charact Use Stereolithography Mol 26:1199. https://doi.org/10.3390/molecules26051199

    Article  CAS  Google Scholar 

  83. Wang H, Li W (2006) Selective HIFU foaming to fabricate porous polymer for tissue engineering scaffolds. In: Manufacturing science and engineering, Parts A and B. ASMEDC

  84. Griffin K, Pappas D (2023) 3D printed microfluidics for bioanalysis: a review of recent advancements and applications. TrAC Trends Anal Chem 158:116892. https://doi.org/10.1016/j.trac.2022.116892

    Article  CAS  Google Scholar 

  85. Zhao T, Yu R, Li S et al (2019) Superstretchable and processable silicone elastomers by digital light processing 3D printing. ACS Appl Mater Interfaces 11:14391–14398. https://doi.org/10.1021/acsami.9b03156

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt J, Altun AA, Schwentenwein M, Colombo P (2019) Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers. J Eur Ceram Soc 39:1336–1343. https://doi.org/10.1016/j.jeurceramsoc.2018.11.038

    Article  CAS  Google Scholar 

  87. Xiao T, Qian C, Yin R et al (2020) 3D printing of flexible strain sensor array based on UV-curable multiwalled carbon nanotube/elastomer composite. Adv Mater Technol 6:1. https://doi.org/10.1002/admt.202000745

    Article  CAS  Google Scholar 

  88. Wei Y, Zhao D, Cao Q et al (2020) Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system. ACS Biomater Sci Eng 6:1787–1797. https://doi.org/10.1021/acsbiomaterials.9b01663

    Article  CAS  PubMed  Google Scholar 

  89. Cao Y, Shi T, Jiao C et al (2020) Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing. Ceram Int 46:2300–2308. https://doi.org/10.1016/j.ceramint.2019.09.219

    Article  CAS  Google Scholar 

  90. Yuk H, Lu B, Lin S et al (2020) 3D printing of conducting polymers. Nat Commun 11:1. https://doi.org/10.1038/s41467-020-15316-7

    Article  ADS  CAS  Google Scholar 

  91. Han H, Cho S (2018) Fabrication of conducting polyacrylate resin solution with polyaniline nanofiber and graphene for conductive 3D printing application. Polymers 10:1003. https://doi.org/10.3390/polym10091003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Faria D, Sahoo N, Monteiro F et al (2023) Direct laser writing (Dlw)-based biofunctionalization of Ti6Al4V for enhanced osseointegration of implants. Elsevier, Amsterdam

    Book  Google Scholar 

  93. Dey PKr, Samanta S, Ganguly P (2014) Fabrication of ridge polymer waveguide by direct laser writing at 375 nm Wavelength. In: 12th international conference on fiber optics and photonics. OSA, Washington, DC

  94. Ayeshaamriam A, Saravanakkumar D, Punithavelan N et al (2023) Improving the catalytic properties of ceramics—CNT composites by carbon nanotubes (CNTs) surface modification. In: Surface modification and functionalization of ceramic composites. Elsevier, Amsterdam, pp 45–57

  95. Hardon S, Kudelcik J (2020) Theoretical analyzation of the complex permittivity of epoxy resin with ZnO nanoparticles. In: 2020 ELEKTRO. IEEE

  96. Piqué A (2006) Laser direct-write of polymer nanocomposites. J Laser Micro/Nanoeng 1:102–105. https://doi.org/10.2961/jlmn.2006.02.0003

    Article  Google Scholar 

  97. Anvekar V (2023) Gold-capped Su8 nanoridges on gold film as plasmonic sensor. Center for Open Science

  98. Ovsianikov A, Deiwick A, Van Vlierberghe S et al (2011) Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues. Materials 4:288–299. https://doi.org/10.3390/ma4010288

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chiantore O, Camino G, Chiorino A, Guaita M (1977) Free radical polymerization of unconjugated dienes, 15. Dependence of the composition of poly(methacrylic anhydride) on the monomer concentration. Die Makromolekulare Chemie 178:119–124. https://doi.org/10.1002/macp.1977.021780112

    Article  CAS  Google Scholar 

  100. Fedorovich NE, Moroni L, Malda J et al (2010) 3D-fiber deposition for tissue engineering and organ printing applications. In: Cell and organ printing. Springer Netherlands, Dordrecht, pp 225–239

  101. Cho D-W, Lee J-S, Jang J et al (2015) Biomaterials for organ printing. In: Organ printing. morgan and claypool publishers, pp 6-1–6-2

  102. Hobolt-Pedersen A-S, Delaissé J-M, Søe K (2014) Osteoclast fusion is based on heterogeneity between fusion partners. Calcif Tissue Int 95:73–82. https://doi.org/10.1007/s00223-014-9864-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mironov V, Khesuani YD, Bulanova EA et al (2016) Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Int J Bioprint 2:1. https://doi.org/10.18063/ijb.2016.01.0077

    Article  Google Scholar 

  104. Kim BS, Lee J-S, Gao G, Cho D-W (2017) Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9:025034. https://doi.org/10.1088/1758-5090/aa71c8

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Souza G (2020) Magnetic 3D bioprinting for personalized medicine. Cytotherapy 22:S21–S22. https://doi.org/10.1016/j.jcyt.2020.03.493

    Article  Google Scholar 

  106. Furlani EP (2015) Fluid mechanics for Inkjet printing. Fundam of Inkjet Print. https://doi.org/10.1002/9783527684724.ch2

    Article  Google Scholar 

  107. Xiao X, Li G, Liu T, Gu M (2022) Experimental study of the jetting behavior of high-viscosity nanosilver Inks in Inkjet-based 3D printing. Nanomaterials 12:3076. https://doi.org/10.3390/nano12173076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boualleg A, Cirkl D, Macháček J (2023) Polyjet printing and mechanical characterization of new mixture elastomers with varying strain rates. Elsevier, Amsterdam

    Book  Google Scholar 

  109. Oh S, Choi S (2018) 3D-printed capillary circuits for calibration-free viscosity measurement of Newtonian and non-Newtonian fluids. Micromachines 9:314. https://doi.org/10.3390/mi9070314

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ebrahimi Z, Irani S, Ardeshirylajimi A, Seyedjafari E (2022) Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep 12:1. https://doi.org/10.1038/s41598-022-15602-y

    Article  CAS  Google Scholar 

  111. Beheshtizadeh N, Azami M, Abbasi H, Farzin A (2022) Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res 40:69–94. https://doi.org/10.1016/j.jare.2021.12.012

    Article  CAS  PubMed  Google Scholar 

  112. Huang BQ, Jia L, Sun JM, Wei XF (2012) Research on the surface tension of water-based Ink-Jet Ink. Appl Mech Mater 262:464–469. https://doi.org/10.4028/www.scientific.net/amm.262.464

    Article  Google Scholar 

  113. Norikane Y, Iwata H, Matsumura T et al (2016) Three dimensional inkjet fabrication of nano-composite hydrogel. NIP Digit Fabric Conf 32:14–17. https://doi.org/10.2352/issn.2169-4451.2017.32.14

    Article  Google Scholar 

  114. Shofiah S, Muflihatun, Suharyadi E (2016) Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles. In: AIP conference proceedings. Author(s)

  115. Chong SF, Razak KA, Nor NM et al (2019) Electrochemical glucose detection using screen-printed carbon electrode modified silica-encapsulated iron oxide nanoparticles. Mater Today: Proc 17:1189–1196. https://doi.org/10.1016/j.matpr.2019.06.562

    Article  CAS  Google Scholar 

  116. Cheng C, Moon YJ, Hwang JY et al (2022) A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. Int J Heat Mass Transf 191:122840. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Łabowska MB, Cierluk K, Jankowska AM et al (2021) A REVIEW on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials 14:858. https://doi.org/10.3390/ma14040858

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Christensen K, Xu C, Chai W et al (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112:1047–1055. https://doi.org/10.1002/bit.25501

    Article  CAS  PubMed  Google Scholar 

  119. Peirce-Cottler S (2020) 3D-printing of stem cells and stromal cells to prime for vascularization and regeneration. FASEB J 34:1–1. https://doi.org/10.1096/fasebj.2020.34.s1.00395

    Article  Google Scholar 

  120. Cohen R, Baruch E-S, Cabilly I et al (2023) Modified ECM-based bioink for 3D printing of multi-scale vascular networks. Gels 9:792. https://doi.org/10.3390/gels9100792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Touchard G, Chang J-S (2009) Editorial: electrohydrodynamics (EHD) and flow electrification. IEEE Trans Dielectr Electr Insul 16:291–291. https://doi.org/10.1109/tdei.2009.4815154

    Article  Google Scholar 

  122. Gardner SD, Islam MdT, Alexander JID et al (2020) A carbon nanotube inkjet-printed hybrid circuit for non-conventional computing. In: 2020 IEEE 63rd international Midwest symposium on circuits and systems (MWSCAS). IEEE

  123. Shen X, Chu M, Hariri F et al (2020) Binder jetting fabrication of highly flexible and electrically conductive graphene/PVOH composites. Addit Manuf 36:101565. https://doi.org/10.1016/j.addma.2020.101565

    Article  CAS  Google Scholar 

  124. Nakamura H, Yoshida Y, Izumi K et al (2017) Simultaneous printing of interconnects with different line width using soft blanket gravure printing. In: 2017 international conference on electronics packaging (ICEP). IEEE

  125. Ahn J-H, Hong H-J, Lee C-Y (2021) Temperature-sensing inks using electrohydrodynamic inkjet printing technology. Materials 14:5623. https://doi.org/10.3390/ma14195623

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li X, Park H, Lee MH et al (2018) High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Org Electron 62:400–406. https://doi.org/10.1016/j.orgel.2018.08.032

    Article  CAS  Google Scholar 

  127. Jeong YJ, Lee X, Bae J et al (2016) Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors. J Mater Chem C 4:4912–4919. https://doi.org/10.1039/c6tc01371f

    Article  CAS  Google Scholar 

  128. Wang B, Chen X, Ahmad Z et al (2019) 3D electrohydrodynamic printing of highly aligned dual-core graphene composite matrices. Carbon 153:285–297. https://doi.org/10.1016/j.carbon.2019.07.030

    Article  CAS  Google Scholar 

  129. Norda M, Reineke L, Wonn D, Boris Hein S (2023) Investigation of binder droplet impact in metal binder jetting. In: Euro PM2023 Proceedings. EPMA

  130. Azhari A, Marzbanrad E, Yilman D et al (2017) Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon 119:257–266. https://doi.org/10.1016/j.carbon.2017.04.028

    Article  CAS  Google Scholar 

  131. Zhang J, Allardyce BJ, Rajkhowa R et al (2021) 3D printing of silk powder by Binder Jetting technique. Addit Manuf 38:101820. https://doi.org/10.1016/j.addma.2020.101820

    Article  CAS  Google Scholar 

  132. Bai Y, Williams CB (2018) Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des 147:146–156. https://doi.org/10.1016/j.matdes.2018.03.027

    Article  CAS  Google Scholar 

  133. Wei Q, Wang Y, Chai W et al (2017) Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 43:13702–13709. https://doi.org/10.1016/j.ceramint.2017.07.082

    Article  CAS  Google Scholar 

  134. Reddy MK, Bogu VP (2021) Design and development of syringe based extruder for an FDM printer. Int J Curr Eng Technol 11:502–508. https://doi.org/10.14741/ijcet/v.11.5.2

    Article  Google Scholar 

  135. Deng X, Bian X, Li M (2021) LDM-Ex-FDM: a novel multi-service transmission scheme for the ATSC 30 system. Appl Sci 11:3178. https://doi.org/10.3390/app11073178

    Article  CAS  Google Scholar 

  136. Gomez-Barquero D, Simeone O (2015) LDM versus FDM/TDM for unequal error protection in terrestrial broadcasting systems: an information-theoretic view. IEEE Trans Broadcast 61:571–579. https://doi.org/10.1109/tbc.2015.2459665

    Article  Google Scholar 

  137. Yu JW, Jeong HJ, Park JH, Lee DH (2022) Analysis of correlation between FDM additive and finishing process conditions in FDM additive-finishing integrated process for the improved surface quality of FDM prints. J Korean Soc Precis Eng 39:159–165. https://doi.org/10.7736/jkspe.021.114

    Article  Google Scholar 

  138. Chang W-C, Tai A-Z, Tsai N-Y, Li Y-CE (2021) An injectable hybrid gelatin methacryloyl (GelMA)/phenyl isothiocyanate-modified gelatin (Gel-Phe) bioadhesive for oral/dental hemostasis applications. Polymers 13:2386. https://doi.org/10.3390/polym13142386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Abdullah AM, Tuan Rahim TNA, Mohamad D et al (2017) Mechanical and physical properties of highly ZrO2/β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Mater Lett 189:307–309. https://doi.org/10.1016/j.matlet.2016.11.052

    Article  CAS  Google Scholar 

  140. Xu L, Varkey M, Jorgensen A et al (2020) Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication 12:045012. https://doi.org/10.1088/1758-5090/aba2b6

    Article  CAS  PubMed  Google Scholar 

  141. Andersson T, Stålbom B, Wesslén B (2004) Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion. J Appl Polym Sci 92:684–685. https://doi.org/10.1002/app.20183

    Article  CAS  Google Scholar 

  142. Gong M, Xu Y, Tang P et al (2011) 3D CT image-guided parallel mechanism-assisted femur fracture reduction. ROBOT 33:303–306. https://doi.org/10.3724/sp.j.1218.2011.00303

    Article  Google Scholar 

  143. Boparai KS, Kumar A, Singh R (2022) Integration of 4D imaging with 4D printing. In: 4D imaging to 4D printing. CRC Press, Boca Raton, pp 1–26

  144. Jia Z, Lan D, Chang M et al (2023) Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers. Mater Today Phys 37:101215. https://doi.org/10.1016/j.mtphys.2023.101215

    Article  CAS  Google Scholar 

  145. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23:094007. https://doi.org/10.1088/0964-1726/23/9/094007

    Article  ADS  Google Scholar 

  146. Liu G, Zhao Y, Wu G, Lu J (2018) Origami and 4D printing of elastomer-derived ceramic structures. Sci Adv. https://doi.org/10.1126/sciadv.aat0641

    Article  PubMed  PubMed Central  Google Scholar 

  147. Huang Z, Li J, Chen X et al (2023) Photothermal sensitive 3D printed biodegradable polyester Scaffolds with polydopamine coating for bone tissue engineering. Polymers 15:381. https://doi.org/10.3390/polym15020381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nadgorny M, Xiao Z, Chen C, Connal LA (2016) Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces 8:28946–28954. https://doi.org/10.1021/acsami.6b07388

    Article  CAS  PubMed  Google Scholar 

  149. Doleyres Y (2020) Benefits of branched polymeric nanoparticles for enhanced targeted drug delivery. Nanomed Nanotechnol open Access 5:1. https://doi.org/10.23880/nnoa-16000187

    Article  Google Scholar 

  150. Khan SB, Irfan S, Lam SS et al (2022) 3D printed nanofiltration membrane technology for waste water distillation. J Water Process Eng 49:102958. https://doi.org/10.1016/j.jwpe.2022.102958

    Article  Google Scholar 

  151. Ruiz OG, Dhaher Y (2021) Multi-color and multi-material 3d printing of knee joint models. Print Med. https://doi.org/10.1186/s41205-021-00100-0

    Article  Google Scholar 

  152. Extrand CW, Bhatt S (2000) The chemical compatibility of insert-molded bimaterial composites of polycarbonate and carbon fiber polyetheretherketone. J Appl Polym Sci 78:173–178. https://doi.org/10.1002/1097-4628(20001003)78:1%3c173::aid-app210%3e3.0.co;2-h

    Article  CAS  Google Scholar 

  153. Zub K, Hoeppener S, Schubert US (2022) Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 34:1. https://doi.org/10.1002/adma.202105015

    Article  CAS  Google Scholar 

  154. Marzec M (2018) Introductory chapter: non-invasive diagnostic methods in medicine. In: Non-invasive diagnostic methods—image processing. IntechOpen

  155. Goonoo N, Bhaw-Luximon A (2019) Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv 9:18124–18146. https://doi.org/10.1039/c9ra02765c

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yeow TK, Shee LS, Chuan YL, May CP (2020) Enhanced Scaffold fabrication techniques for optimal characterization. In: Tissue engineering strategies for organ regeneration. CRC Press, Boca Raton, pp 23–50

  157. Wei P, Xu Y, Gu Y et al (2020) 3D-printed PCL composite scaffolds incorporating IGF-1 loaded PLGA nanoparticles for cartilage tissue engineering. Research Square Platform LLC, Durham

    Google Scholar 

  158. Lazov L, Singh Ghalot R, Teirumnieks E (2021) Silver nanoparticles—preparation methods and anti-bacterial/viral remedy impacts against COVID 19. In: Silver micro-nanoparticles—properties, synthesis, characterization, and applications. IntechOpen

  159. Khan SB, Irfan S, Lee S-L (2019) Influence of Zn+2 doping on Ni-based nanoferrites; (Ni1xZnxFe2O4). Nanomaterials 9:1024. https://doi.org/10.3390/nano9071024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Maji K, Dasgupta S (2017) Effect of βTricalcium phosphate nanoparticles additions on the properties of Gelatin-Chitosan Scaffolds. Bioceram Dev Appl. https://doi.org/10.4172/2090-5025.1000103

    Article  Google Scholar 

  161. Blachowicz T, Ehrmann G, Ehrmann A (2021) Optical elements from 3D printed polymers. E-Polymers 21:549–565. https://doi.org/10.1515/epoly-2021-0061

    Article  CAS  Google Scholar 

  162. Geoghegan L, Papadopoulos D, Petrie N et al (2023) Utilization of a 3D printed simulation training model to improve microsurgical training. Plast Reconstruct Surg Glob Open 11:e4898. https://doi.org/10.1097/gox.0000000000004898

    Article  Google Scholar 

  163. Celikkin N, Mastrogiacomo S, Walboomers X, Swieszkowski W (2019) Enhancing X-ray attenuation of 3D printed gelatin methacrylate (GelMA) Hydrogels utilizing gold nanoparticles for bone tissue engineering applications. Polymers 11:367. https://doi.org/10.3390/polym11020367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pourmollaabbassi B, Mahdavi H, Shojaei S et al (2023) Fabrication of 3D-printed quaternary scaffolds containing polymeric matrix plus alginate nanoparticles and MWCNTs for cartilage tissue engineering. Research Square Platform LLC

  165. Li J (2020) Predictive multiscale modeling of 3D printed polymers for enhanced fracture performance. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia

  166. Nelson FRT (2012) Preface: long-term effects of musculoskeletal tissue Scaffolds. J Long Term Effect Med Implants 22:x–xi. https://doi.org/10.1615/jlongtermeffmedimplants.2013006534

    Article  Google Scholar 

  167. Bartnikowski M, Vaquette C, Ivanovski S (2020) Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration. Clin Oral Implant Res 31:431–441. https://doi.org/10.1111/clr.13579

    Article  Google Scholar 

  168. Feng YS (2021) Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv. https://doi.org/10.2174/18755704mtexxndcs2

    Article  PubMed  Google Scholar 

  169. Gómez-Gras G, Abad MD, Pérez MA (2021) Mechanical performance of 3D-printed biocompatible polycarbonate for biomechanical applications. Polymers 13:3669. https://doi.org/10.3390/polym13213669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bandinelli F, Peroni L, Morena A (2023) Elasto-plastic mechanical modeling of fused deposition 3D printing materials. Polymers 15:234. https://doi.org/10.3390/polym15010234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Papastergiou M, Kanellou A, Chriti D et al (2018) Poly(urethane-acrylate) aerogels via radical polymerization of dendritic urethane-acrylate monomers. Materials 11:2249. https://doi.org/10.3390/ma11112249

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li C, Cheng J, Chang W, Nie J (2012) Photopolymerization kinetics and properties of a trifunctional epoxy acrylate. Des Monomers Polym 16:274–282. https://doi.org/10.1080/15685551.2012.747143

    Article  CAS  Google Scholar 

  173. Tarafder S, Lee CH (2017) 3D printing integrated with controlled delivery for musculoskeletal tissue engineering. J 3D Print Med 1:181–189. https://doi.org/10.2217/3dp-2017-0005

    Article  CAS  Google Scholar 

  174. Bai J, Liu C, Kong L et al (2022) Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane promotes nerve regeneration and prevents fibrosis in a rat sciatic nerve transection model. Front Surg. https://doi.org/10.3389/fsurg.2022.842540

    Article  PubMed  PubMed Central  Google Scholar 

  175. Du X (2016) Controlled assemblies of stimuli-responsive mesoporous silica drug delivery systems for controlled release of drugs. Chin Sci Bull 62:519–531. https://doi.org/10.1360/n972016-00409

    Article  Google Scholar 

  176. Iglesias-Mejuto A, García-González CA (2022) 3D-printed, dual crosslinked and sterile aerogel scaffolds for bone tissue engineering. Polymers 14:1211. https://doi.org/10.3390/polym14061211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wei C, Yu W, Wu L et al (2022) Physically and chemically stable anion exchange membranes with hydrogen-bond induced ion conducting channels. Polymers 14:4920. https://doi.org/10.3390/polym14224920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Karevan M, Kalaitzidou K (2012) Characteristics of exfoliated graphite nanoplatelets-Polyamide12 nanocomposites processed by extrusion injection molding. In: ASME 2012 international manufacturing science and engineering conference. American Society of Mechanical Engineers

  179. Romeo J (2020) 3D printing: reshaping our engineering culture? Plast Eng 76:42–45. https://doi.org/10.1002/peng.20274

    Article  Google Scholar 

  180. Singh S, Ramakrishna S (2022) Recycling of thermoplastic wastes: a route of waste to wealth via three-dimensional printing. In: Encyclopedia of materials: plastics and polymers. Elsevier, Amsterdam. pp 510–515

  181. Bakhtiari H, Nikzad M, Tolouei-Rad M (2023) Influence of three-dimensional printing parameters on compressive properties and surface smoothness of polylactic acid specimens. Polymers 15:3827. https://doi.org/10.3390/polym15183827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jarach N, Dodiuk H, Kenig S, Magdassi S (2023) Fully recyclable cured polymers for sustainable 3D printing. Adv Mater. https://doi.org/10.1002/adma.202307297

    Article  PubMed  Google Scholar 

  183. Dimonie D, Dragomir N, Stoica R (2021) Attempts to diminish the drawbacks of polylactic acid designed for 3D/4D printing technology-fused deposition modeling. Materiale Plastice 58:142–153. https://doi.org/10.37358/mp.21.1.5454

    Article  Google Scholar 

  184. Geierlehner A, Malferrari S, Kalaskar DM (2019) The optimization of a 3D scanning technique applied for 3D printing of bespoke medical devices. J 3D Print Med 3:71–82. https://doi.org/10.2217/3dp-2018-0026

    Article  Google Scholar 

  185. dos Reis DdAL, Gouveia BLR, Júnior JCR, de Assis Neto AC (2019) Comparative assessment of anatomical details of thoracic limb bones of a horse to that of models produced via scanning and 3D printing. 3D Print Med 5:1. https://doi.org/10.1186/s41205-019-0050-2

    Article  Google Scholar 

  186. Wheeler JSR, Yeates SG (2015) Polymers in Inkjet printing. Fundam Inkjet Print. https://doi.org/10.1002/9783527684724.ch5

    Article  Google Scholar 

  187. Zhou Z, Cunningham E, Lennon A et al (2017) Effects of poly(ε-caprolactone) coating on the properties of three-dimensional printed porous structures. J Mech Behav Biomed Mater 70:68–83. https://doi.org/10.1016/j.jmbbm.2016.04.035

    Article  CAS  PubMed  Google Scholar 

  188. Ghaziof S, Shojaei S, Mehdikhani M et al (2021) 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering. SSRN Electron J. https://doi.org/10.2139/ssrn.3969021

    Article  Google Scholar 

Download references

Funding

The authors express their gratitude for the support provided by the National Natural Science Foundation of China (Grant number 12072300) and Prof Weifeng Yuan from the School of Manufacturing Science and Engineering, Key Laboratory of Testing for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, People’s Republic of China, for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Bashir Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.B., Chen, S. & Sun, X. Advancements in polymer nanocomposite manufacturing: revolutionizing medical breakthroughs via additive manufacturing. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05154-8

Keywords

Navigation