Skip to main content

Advertisement

Log in

Synthesis, characterization and in vitro release analysis of pluronic F127 copolymer micelles containing quercetin as a hydrophobic drug

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The object of the present study is to develop a new controlled drug release system by loading quercetin into pluronic F127 micelles. For the experimental studies, first of all, the critical micelle concentration (CMC) of the pluronic F127 copolymer was found as 4.5% g/mL at 25 °C, since the micelle-forming surfactants formed micelles at concentrations equal to or higher than the CMC. Afterward, with thin-film hydration method, three micelle groups with different polymer/quercetin ratios were formed. In this procedure, pluronic F127 polymer dissolved in ethanol at 30–40 °C and different amount of quercetin was added to the polymer solution. The polymer-quercetin solutions were evaporated in the evaporator at 40 °C for 2 h to obtain a film. The resulting film was hydrated by adding of ultrapure water and the micelle suspensions were obtained after filtration. According to Malvern Zetasizer measurement and transmission electron microscope (TEM) analysis, quercetin loaded micelles were determined to have particle sizes between 40 and 50 nm. It was determined by fourier-transform infrared spectroscopy (FTIR) analysis that quercetin was physically found into pluronic F127 micelles without any chemical reaction. It was determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyzes that quercetin was present in amorphous form as a solid solution instead of in crystalline form in the micelles. Thermogravimetric analysis (TGA) analysis showed that loading quercetin into the micelles did not affect the thermal stability of the PF127 copolymer. The drug loading amounts for micelles were found between 1.95% and 3.3% (mg/mg) for different micelles groups and there was not much difference in the percentage of encapsulation efficiency values thought to the groups. In vitro release profiles of quercetin-loaded micelles were investigated in pH 7.4 phosphate buffer solution and at 37 °C. When the release results were examined in general, it was seen that the release rates of all formulations were almost the same after 168 h. The kinetic parameters of the release results of the micelles in different formulations were calculated according to the Peppas equation and it was determined that the quercetin release in each micelle formulation did not comply with Fick’s law, according to the calculated n parameter. Quercetin-loaded polymeric micelles obtained in this study offer advantages due to their easy synthesis methods and slow release profiles and they can used to successfully encapsulation of hydrophobic active ingredients like quercetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Patel S (2008) Oral sustained release formulation of anticancer drug camptothecin using hydroxyl propyl methyl cellulose. Long Island University, Brooklyn, Master of Science

    Google Scholar 

  2. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946. https://doi.org/10.1021/ar200023x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23(36):H217–H247. https://doi.org/10.1002/adma.201102313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hosoya H, Dobroff AS, Driessen WH, Cristini V, Brinker LM, Staquicini FI, Cardó-Vila M, D’Angelo S, Ferrara F, Proneth B, Lin YS (2016) Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proc Natl Acad Sci 113(7):1877–1882. https://doi.org/10.1073/pnas.1525796113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo X, Wei X, Jing Y, Zhou S (2015) Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv Mater 27(41):6450–6456. https://doi.org/10.1002/adma.201502865

    Article  CAS  PubMed  Google Scholar 

  6. Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159(3):312–323. https://doi.org/10.1016/j.jconrel.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  7. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131. https://doi.org/10.1016/S0169-409X(00)00124-1

    Article  CAS  PubMed  Google Scholar 

  8. Tuzar Z, Kratochvíl P (1976) Block and graft copolymer micelles in solution. Adv Colloid Interface Sci 6(3):201–232. https://doi.org/10.1016/0001-8686(76)80009-7

    Article  CAS  Google Scholar 

  9. Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM (2017) Polymeric micelles: Basic research to clinical practice. Int J Pharm 532(1):249–268. https://doi.org/10.1016/j.ijpharm.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106. https://doi.org/10.1016/j.jconrel.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moebus K, Siepmann J, Bodmeier R (2009) Alginate-poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur J Pharm Biopharm 72(1):42–53. https://doi.org/10.1016/j.ejpb.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  12. Jones M, Leroux J (1999) Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111. https://doi.org/10.1016/S0939-6411(99)00039-9

    Article  CAS  PubMed  Google Scholar 

  13. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 16(1–4):3–27. https://doi.org/10.1016/S0927-7765(99)00058-2

    Article  CAS  Google Scholar 

  14. Gyulai G, Magyar A, Rohonczy J, Orosz J, Yamasaki M, Sz B, Kiss É (2016) Preparation and characterization of cationic Pluronic for surface modification and functionalization of polymeric drug delivery nanoparticles. EXPRESS Polym Lett 10(3):216–226. https://doi.org/10.3144/expresspolymlett.2016.20

    Article  CAS  Google Scholar 

  15. Liu L, Tang Y, Gao C, Li Y, Chen S, Xiong T, Li J, Du M, Gong Z, Chen H, Liu L, Yao P (2014) Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids Surf B: Biointerfaces 115:125–131. https://doi.org/10.1016/j.colsurfb.2013.11.029

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yang Y, Tang K, Hu X, Zou G (2008) Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci 107(2):891–897. https://doi.org/10.1002/app.26402

    Article  CAS  Google Scholar 

  17. Gutierrez J (2014) Quercetin supplementation reduces maternal hyperglycemia in a type 2 diabetes mellitus mouse model. Annu Res Rev Biol 4(1):306–311. https://doi.org/10.9734/ARRB/2014/5431

    Article  Google Scholar 

  18. Kelly GS (2011) Quercetin. Altern Med Rev 16(2):172–194

    PubMed  Google Scholar 

  19. Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H, Veit M (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41(5):492–499. https://doi.org/10.1177/00912700122010366

    Article  CAS  PubMed  Google Scholar 

  20. İspir E (2019) Use Of Quercetin-Loaded Micelles As Controlled Drug Release System. Master Thesis, Kırıkkale University.

  21. Raval A, Pillai SA, Bahadur A, Bahadur P (2017) Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J Mol Liq 230:473–481. https://doi.org/10.1016/j.molliq.2017.01.065

    Article  CAS  Google Scholar 

  22. Khonkarn R, Mankhetkorn S, Hennink WE, Okonogi S (2011) PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 79(1):268–275. https://doi.org/10.1016/j.ejpb.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  23. Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford

    Book  Google Scholar 

  24. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425. https://doi.org/10.1021/ma00087a009

    Article  CAS  Google Scholar 

  25. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170. https://doi.org/10.1016/S0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  26. Bohorquez M, Koch C, Trygstad T, Pandit N (1999) A study of the temperature-dependent micellization of pluronic F127. J Colloid Interface Sci 216(1):34–40. https://doi.org/10.1006/jcis.1999.6273

    Article  CAS  PubMed  Google Scholar 

  27. Xiong XY, Tam KC, Gan LH (2005) Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. Polymer 46(6):1841–1850. https://doi.org/10.1016/j.polymer.2005.01.010

    Article  CAS  Google Scholar 

  28. Arranja A, Schroder AP, Schmutz M, Waton G, Schosseler F, Mendes E (2014) Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking. J Control Release 196:87–95. https://doi.org/10.1016/j.jconrel.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Managa M, Ngoy BP, Nyokong T (2017) The photophysical studies of Pluronic F127/P123 micelle mixture system loaded with metal free and Zn 5,10,15,20-tetrakis[4-(benzyloxy) phenyl]porphyrins. J Photochem Photobiol A Chem 339:49–58. https://doi.org/10.1016/j.jphotochem.2017.02.018

    Article  CAS  Google Scholar 

  30. Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS (2019) Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Colloids Surf A Physicochem Eng Asp 562:361–369. https://doi.org/10.1016/j.colsurfa.2018.11.052

    Article  CAS  Google Scholar 

  31. Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, Sahrma RK (2022) Formulation, solubilization, and in vitro characterization of quercetin-incorporated mixed micelles of PEO-PPO-PEO block copolymers. Appl Biochem Biotechnol 194:445–463. https://doi.org/10.1007/s12010-021-03691-w

    Article  CAS  PubMed  Google Scholar 

  32. Teli SB, Benamor A, Nasser M, Hawari A, Zaidi SJ, Ba-abbad M, Mohammad AW (2017) Effects of amphiphilic pluronic F127 on the performance of PS/SPEEK blend ultrafiltration membrane: characterization and antifouling study. J Water Process Eng 18:176–184. https://doi.org/10.1016/j.jwpe.2017.06.013

    Article  Google Scholar 

  33. Nguyen TT, Jeong JH (2018) Development of a single-jet electrospray method for producing quercetin-loaded poly (lactic-co-glycolic acid) microspheres with prolonged-release patterns. J Drug Deliv Sci Technol 47:268–274. https://doi.org/10.1016/j.jddst.2018.07.005

    Article  CAS  Google Scholar 

  34. Branca C, Khouzami K, Wanderlingh U, D’Angelo G (2018) Effect of intercalated chitosan/clay nanostructures on concentrated pluronic F127 solution: a FTIR-ATR, DSC and rheological study. J Colloid Interface Sci 517:221–229. https://doi.org/10.1016/j.jcis.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  35. Albano JM, de Morais Ribeiro LN, Couto VM, Messias MB, da Silva GHR, Breitkreitz MC, de Paula E, Pickholz M (2019) Rational design of polymer-lipid nanoparticles for docetaxel delivery. Colloids Surfaces B: Biointerfaces 175:56–64. https://doi.org/10.1016/j.colsurfb.2018.11.077

    Article  CAS  PubMed  Google Scholar 

  36. Verma V, Sharma P, Sharma J, Kaur Lamba A, Lamba HS (2017) Development, characterization and solubility study of solid dispersion of Quercetin by solvent evaporation method. Mater Today Proc 4(9):10128–10133. https://doi.org/10.1016/j.matpr.2017.06.334

    Article  Google Scholar 

  37. Hazra M, Dasgupta Mandal D, Mandal T, Bhuniya S, Ghosh M (2015) Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharm J 23(4):429–436. https://doi.org/10.1016/j.jsps.2015.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xing J, Zhang D, Tan T (2007) Studies on the oridonin-loaded poly(d, l-lactic acid) nanoparticles in vitro and in vivo. Int J Biol Macromol 40(2):153–158. https://doi.org/10.1016/j.ijbiomac.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  39. Doost AS, Muhammad DRS, Stevens CV, Dewettinck K, Van der Meeren P (2018) Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocoll 83:190–201. https://doi.org/10.1016/j.foodhyd.2018.04.050

    Article  CAS  Google Scholar 

  40. Thanitwatthanasak S, Sagis LMC, Chitprasert P (2019) Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq 274:223–238. https://doi.org/10.1016/j.molliq.2018.10.089

    Article  CAS  Google Scholar 

  41. Bai R, Zhang X, Yong H, Wang X, Liu Y, Liu J (2019) Development and characterization of antioxidant active packaging and intelligent Al3+-sensing films based on carboxymethyl chitosan and quercetin. Int J Biol Macromol 126:1074–1084. https://doi.org/10.1016/j.ijbiomac.2018.12.264

    Article  CAS  PubMed  Google Scholar 

  42. Benbettaïeb N, Karbowiak T, Brachais CH, Debeaufort F (2015) Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: a structure–function approach. Eur Polym J 67:113–127. https://doi.org/10.1016/j.eurpolymj.2015.03.060

    Article  CAS  Google Scholar 

  43. Gadelle F, Koros WJ, Schechter RS (1995) Solubilization of aromatic solutes in block copolymers. Macromolecules 28(14):4883–4892. https://doi.org/10.1021/ma00118a014

    Article  CAS  Google Scholar 

  44. Mohamed EA, Abu Hashim II, Yusif RM, Suddek GM, Shaaban AAA, Badria FAE (2017) Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities. Eur J Pharm Sci 96:232–242. https://doi.org/10.1016/j.ejps.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  45. Jindal N, Mehta SK (2015) Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B Biointerfaces 129:100–106. https://doi.org/10.1016/j.colsurfb.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  46. Teng Y, Morrison ME, Munk P, Webber SE, Procházka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 129:3578–3587. https://doi.org/10.1021/ma971721u

    Article  Google Scholar 

  47. Gao J, Ming J, He B, Fan Y, Gu Z, Zhang X (2008) Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery. Eur J Pharm Sci 34(2–3):85–93. https://doi.org/10.1016/j.ejps.2008.01.016

    Article  CAS  PubMed  Google Scholar 

  48. Sezgin Z, Yüksel N, Baykara T (2006) Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 64(3):261–268. https://doi.org/10.1016/j.ejpb.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  49. Pang X, Lu Z, Du H, Yang X, Zhai G (2014) Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B 123:778–786. https://doi.org/10.1016/j.colsurfb.2014.10.025

    Article  CAS  Google Scholar 

  50. Singla P, Singh O, Chabba S, Mahajan RK (2018) Pluronic-SAILs (surface active ionic liquids) mixed micelles as efficient hydrophobic quercetin drug carriers. J Mol Liq 249:294–303. https://doi.org/10.1016/j.molliq.2017.11.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kırıkkale University for providing us the opportunity to make this study a reality. The characterization studies of the micelles were also carried out at the METU Central Laboratory and Kırıkkale University Scientific and Technological Research Application and Research Center. We thank these departments for their contributions.

Funding

Laboratory experiments were carried out in the research laboratories of Kırıkkale University.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the experimental parts of the study. All of the authors were involved in the characterization studies of the micelles. In addition, all of the authors contributed to the writing of the article.

Corresponding author

Correspondence to Zehra Gün Gök.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Consent to publish

This manuscript has not been published elsewhere, has not been submitted for publication, and is not currently under consideration for publication in any journal. We would like to publish our research, which includes the original findings, in the “Polymer Bulletin”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İspir, E., İnal, M., Gün Gök, Z. et al. Synthesis, characterization and in vitro release analysis of pluronic F127 copolymer micelles containing quercetin as a hydrophobic drug. Polym. Bull. 81, 6801–6822 (2024). https://doi.org/10.1007/s00289-023-05040-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05040-9

Keywords

Navigation